首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
ZK60镁合金管材热挤压成形组织演变规律   总被引:1,自引:0,他引:1  
采用数值模拟和试验方法研究了变形镁合金ZK60管材挤压成形组织演变规律。根据材料热模拟试验结果,得到了ZK60镁合金动态再结晶组织演变的Yada模型中的相关系数。结果表明,当挤压速度增大时,挤压管材晶粒尺寸减小,变化规律接近线性。当挤压温度增大时,挤压管材晶粒尺寸增大。挤压比增大时,晶粒尺寸减小。晶粒尺寸数值模拟结果与试验结果吻合,最大相对误差小于16%。当温度在300~360℃时,ZK60镁合金发生了完全动态再结晶,晶粒较小且组织均匀,平均晶粒尺寸是原始晶粒尺寸的38%。  相似文献   

2.
ZK60镁合金热压缩变形流变应力行为与预测   总被引:4,自引:0,他引:4  
在变形温度为523---673 K, 应变速率为0.001---1 s-1的条件下, 采用Gleeble--1500热模拟试验机对ZK60镁合金的热变形行为进行了研究. 结果表明, ZK60镁合金流变应力随变形温度升高和应变速率的降低而减小. 其高温压缩流变应力曲线可描述为加工硬化、过渡、软化和稳态流变4个阶段, 但在温度较高和应变速率较小时, 过渡阶段不很明显. 建立了一个包含应变的流变应力预测模型, 模型中的9个独立参数可以通过非线性最小二乘法拟合求得, 预测的流变应力曲线与实验结果吻合较好.  相似文献   

3.
ZK60镁合金热变形过程中的动态再结晶动力学   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟机对ZK60镁合金在温度为200~400℃、应变速率为0.001~10s-1、最大变形量为60%的条件下进行恒应变速率高温压缩实验,研究高温变形过程中合金的动态再结晶行为;采用EM模型描述合金的动态回复曲线,以此为基础,得出ZK60合金热压缩过程中的动态再结晶动力学Avrami方程.利用有限元模拟合金热压缩过程中的动态再结晶.结果表明ZK60合金热压缩过程中由于存在动态再结晶的软化作用,流变应力达到峰值后逐渐减小,并最终达到稳态;随着变形量的增加和变形温度的升高,动态再结晶体积分数增加,合金变形更加均匀;随着应变速率的增加,动态再结晶分数有所减小,且.变形也更不均匀.  相似文献   

4.
利用光学显微镜(OM)、电子背散射衍射(EBSD)和扫描电子显微镜(SEM)对ZK60镁合金板组织与性能进行分析。利用高密度脉冲电流对轧制变形ZK60镁合金板进行处理,使变形组织在较短时间内发生完全再结晶。再结晶晶粒的平均晶粒尺寸达到3μm,抗拉强度可达310 MPa,伸长率达30.7%。然而,经过同样时间的等效热处理,变形ZK60板并未发生完全再结晶。脉冲电流提高了轧制变形ZK60镁合金再结晶形核速率,加速了再结晶转变过程。脉冲处理优化了ZK60镁合金组织,使其获得了较高的综合力学性能。  相似文献   

5.
对ZK60镁合金在350℃进行了多方向锻造,并通过固溶处理提高铸态ZK60的塑性。结果表明,通过固溶处理能够有效地消除第二相组织以获得均匀的组织结构。通过一次锻造后,ZK60镁合金发生再结晶,多次锻造后获得细小均匀的微观组织,晶粒尺寸能够达到1.5μm。多方向锻造后ZK60镁合金的力学性能得到提高,锻造6次后材料强度提升约81.3%,伸长率提高约180%。  相似文献   

6.
对ZK60镁合金进行了平面应变等温压缩试验,并对不同变形条件下压缩试样的微观组织、拉伸性能进行分析.结果表明,ZK60合金热变形后力学性能得到提高,尤其是塑性得到较大改善,伸长率最高达到38%,断口形貌由河流状变为韧窝状,这主要是由于变形过程中产生动态再结晶,使晶粒明显细化;均匀态组织中个别未溶的共晶组织呈点状断续分布于晶界上,这些点状裂纹在变形过程中不易扩展还可能愈合;在300~380℃对均匀态ZK60合金进行平面压缩后,可获得较优的综合力学性能.  相似文献   

7.
ZK60镁合金ECAP变形组织及力学性能   总被引:1,自引:0,他引:1  
在300℃温度下对ZK60镁合金进行了不同道次的等通道挤压(ECAP).研究了ECAP挤压对合金显微组织、室温力学性能和高温抗蠕变性能的影响.结果表明,合金铸态组织主要由α-Mg基体、Mg7Zn3相和MgZn相组成.等通道挤压可显著破碎层片状MgZn相并使其趋于弥散分布,同时基体组织也得到细化.挤压2道次后,合金的室温抗拉强度由170MPa增加到250MPa,伸长率由7%增加到17.7%.挤压4道次后,合金的伸长率进一步增加到20%,而抗拉强度却下降至242 MPa;合金的高温蠕变寿命由铸态1.4h延长到44.8h,稳态蠕变速率减小了约一个数量级.  相似文献   

8.
采用常规铸造法和等径道角挤压分别制备了镁合金ZK60-RE半固态坯;用金相显微镜研究了2种半固态坯料在等温热处理过程中的微观组织演变。结果表明:与传统铸造方法制备的半固态坯相比,采用等径道角挤压制备的半固态坯的晶粒细小、圆整,适合于半固态成形。在等温热处理过程中,2种坯料晶粒粗化的机制是合并长大和Ostwald长大。铸态坯料晶粒液相来源于非平衡凝固时在晶内产生的共晶组织,以及在随后的合并长大过程中晶粒所包裹的液相。随着保温时间的延长,铸态坯料的晶粒尺寸变化情况是:增大、减小然后又增大;而挤压态坯料的晶粒尺寸呈单一增大趋势。  相似文献   

9.
使用粉末冶金法及热挤压制备了纳米金刚石(ND)增强ZK60镁基复合材料(ND/ZK60),利用热-力模拟仪Gleeble 3500测试了其在不同变形温度(150、200、300和350℃)和应变速率(1、0.1、0.01和0.001 s~(-1))下的真应力-应变曲线;使用X射线衍射仪(XRD)测试了ND/ZK60镁基复合材料在变形温度为300℃及不同应变速率下的基面织构。结果表明:ND/ZK60镁基复合材料的真应力-应变曲线在不同变形温度和应变速率下发生了4个典型的阶段,且随着变形温度的升高和应变速率的减小,加工硬化现象逐渐减弱。变形温度为300℃时,挤压态的复合材料(0002)基面织构比不同应变速率下的复合材料基面织构强,且基面织构随着应变速率的减小而逐渐减弱。  相似文献   

10.
在变形温度为200~400℃、应变速率为0.001~1s-1条件下,对ZK60镁合金进行热压缩实验,建立一个单隐层前馈误差反向传播人工神经网络模型,研究该镁合金的流变行为。模型的输入参数分别为变形温度、应变速率和应变,输出为流变应力,中间隐含层包含23个神经元,并采用Levenberg-Marquardt算法对此网络模型进行训练。结果表明:ZK60镁合金的流变应力随变形温度升高和应变速率降低而减小;其高温压缩流变应力曲线可描述为加工硬化、过渡、软化和稳态流变4个阶段,但在较高温度和较低应变速率时,过渡阶段不很明显;所建神经网络模型可以很好地描述ZK60镁合金的流变应力,其预测值与实验值吻合很好;利用该模型预测的变形温度和应变速率对流变应力的影响结果与一般热加工理论所得结果一致。  相似文献   

11.
A systematic study of the evolution of the microstructure and crystallographic texture during free end torsion of a single phase magnesium alloy Mg–3Al–0.3Mn (AM30) was carried out. The torsion tests were done at a temperature of 250 °C to different strain levels in order to examine the progressive evolution of the microstructure and texture. A detailed microstructural analysis was performed using the electron back-scattered diffraction technique. The observed microstructural features indicated the occurrence of continuous dynamic recovery and recrystallization, starting with the formation of subgrains and ending with recrystallized grains with high angle boundaries. Texture and microstructure evolution were analysed by decoupling the effects of imposed shear and of dynamic recrystallization. Microstructure was partitioned to separate the deformed grains from the recovered/recrystallized grains. The texture of the deformed part could be reproduced by viscoplastic self-consistent polycrystal simulations. Recovered/recrystallized grains were formed as a result of rotation of these grains so as to reach a low plastic energy state.  相似文献   

12.
The twinning process of ZK30+0.3Yb magnesium alloy was studied. The results show that twinning occurs at the initial stage of deformation, and decreases during further deformation. The original grain is fragmented after small straining. It is investigated that the twinning boundary activates the occurrence of the non-basal slip system due to the stress concentration at the vicinity of twin boundary introduced by the dislocation pile-ups at the vicinity of twinning boundary. The rearrangement of dislocation after dislocation climb introduces new grain boundary. Simultaneously, twinning occurs to form “polygonization” due to the stress concentration relaxation, and the “polygonization” will transform into low angle boundary to refine the original grain under the shear stress with further straining.  相似文献   

13.
Twin roll cast ZK60 alloy strip/sheet with final thickness of 0.5 mm was prepared,and effect of rolling temperature on microstructure and texture development was investigated using OM and XRD technique,microstructure and texture were measured on specimens subjected to rolling experiment at different rolling temperature,and macrotexture was also evaluated by X-ray diffraction method.In addition,the(1 010)and(0002) pole figures were measured,and the tensile test was performed to reveal the influence of rolling temperature on mechanical properties.The results show that the microstructure of ZK60 alloy sheet consisted of fibrous structure with elongated grains,and shear bands along the rolling direction after warm rolling.Dynamic recrystallization could be found during the warm rolling process at rolling temperature 350 °C and above.And many fine recrystallized grain could be observed in the shear bands area.It is a little difficult to see the recrystallized grain in the sheet warm rolled at 300 °C because of higher density of shear bands.The warm rolled ZK60 alloy sheet exhibited strong(0002) pole texture,the intensity of(0002) pole figure decreases with the increasing of rolling temperature and the basal pole tilted slightly to the transverse direction after warm rolling.  相似文献   

14.
Steady state rheological behavior of semi-solid ZK60-RE magnesium alloy during compression was studied. The alloy was prepared from ZK60 alloy and RE elements by casting, equal channel angular extruding,and liquidus forging. Semi-solid isothermal pre-treatment was carried out to make the grains spherical before compression. The apparent viscosity increases with decreasing the solid content and shear rate. Another very important factor is the grain size. When the solid content is high, the viscosity increases with decreasing the grain size at high strain rates and decreases with decreasing the grain size at low shear rates. Several fitting equations were obtained by using the power law equation, and the method of time-temperature superposition was used to get more information through a small number of experimental data.  相似文献   

15.
16.
对合金材料来说,退火之后是软化还是硬化,对后续加工工艺的制定有重要影响.为了研究挤压态AZ60镁合金在变形前后的退火力学行为,对其分别进行没有经预先塑性变形和存在预先塑性变形的175℃低温退火处理,研究塑性变形和低温退火对合金组织和力学性能的影响.结果表明:没有经预先塑性变形的挤压态AZ60镁合金,175℃退火处理对其力学性能没有明显的影响.当合金沿着挤压方向预先压缩,产生了{10(1)2}孪晶,之后再进行175℃低温退火时,第二相Al12Mg17在晶界、孪晶界以及孪晶内析出,在随后的变形中阻碍了位错运动和孪晶的长大,显著地提高了合金的屈服强度.  相似文献   

17.
利用电子背散射衍射(EBSD)取向成像技术分析AZ31铸态镁合金在不同温度和真应变下热压缩的晶粒取向和织构特点,从晶粒取向和织构角度分析不同温度下其动态再结晶(DRX)的类型。结果表明:在热压缩过程中,350℃时,AZ31铸态镁合金表现为连续动态再结晶(CDRX)特征,新晶粒取向与基体相似,具有较强的{0002}基面织构,以基面滑移为主;500℃时,为旋转动态再结晶(RDRX)特征,真应变为0.5时,新晶粒取向与基体偏转成一定角度,具有两种主要的基面织构,由于动态再结晶的定向形核、择优核心长大和旋转动态再结晶造成这两种基面织构弱于350℃时的{0002}基面织构;且随着真应变的增加,其中一种织构由于滑移系的改变而逐渐消失。  相似文献   

18.
在350℃下,对挤压态ZK60镁合金分别进行1、4、8道次的往复挤压变形(CEC)。利用金相显微镜(OM)、透射电镜(TEM)观察往复挤压前后ZK60镁合金的微观组织,利用X射线衍射仪(XRD)分析变形前后晶面取向变化,在万能拉伸试验机上测试变形前后镁合金的力学性能,并利用扫描电镜(SEM)观察拉伸断口形貌。往复挤压后的检测结果表明,挤压态ZK60镁合金晶粒显著细化,晶粒尺寸分布较均匀,随着挤压道次增多,晶粒尺寸逐渐减小;1道次变形后组织内产生了大量晶格缺陷,出现了大角度晶界,第二相粒子分布在晶粒内部和晶界上;各晶面衍射峰增强,拉伸断口内存在大量基体撕裂棱和明显的韧窝分布;ZK60镁合金的力学性能变化较大,随着挤压道次增多,伸长率大幅提高,抗拉强度小幅增大,而屈服强度降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号