首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以沙曲二号矿4#煤层为背景,应用“三带”划分计算模型得到工作面顶板覆岩裂隙带高度,应用井下钻孔双端封堵测漏法探测工作面顶板覆岩裂隙带动态演化规律,结果表面,裂隙带发育高度29.5~32.5 m,综合理论计算及现场测试结果,得到工作面顶板裂隙带高度27 m。为该矿井确定高效钻孔瓦斯抽采关键层位提供理论依据,也可为其他采用切顶成巷的沿空留巷开采方式的矿井瓦斯抽采提供参考依据。  相似文献   

2.
合理的高抽巷与顶板距离对于实现瓦斯的高效抽采具有重要意义。以马兰矿某一采面为研究对象,在对研究区煤层特征、岩性特征进行分析的基础上,确定了冒落带、裂隙带高度。根据煤层上部冒落带、裂隙带、弯曲下沉带裂隙的发育情况,确定了高抽巷与顶板的合理距离,并在现场进行了不同距离处抽采效果的对比。对比结果显示:最优距离高抽巷抽采浓度提高了32%,抽采流量提高了21%.抽采效果较好,可为该矿其他工作面高抽巷的合理布置提供指导。  相似文献   

3.
为了确定赵庄矿3#煤层覆岩裂隙发育高度,为高抽巷的层位布置提供依据,利用高抽巷抽放上隅角瓦斯,有效防止上隅角瓦斯超限。利用高位钻孔数据拟合、理论计算和数值模拟相结合的方法,最终确定3#煤层裂隙发育高度。"三带"高度的确定,为高抽巷层位的布置提供可靠依据,从而利用高抽巷抽采上隅角瓦斯,工作面上隅角瓦斯体积分数大幅降低,保障了工作面的高效安全生产。  相似文献   

4.
上隅角瓦斯超限一直是综采工作面瓦斯治理的重点,顶板裂隙带是瓦斯的富集区,将高位钻孔布置在采空区顶板裂隙区内进行瓦斯抽采能有效解决上隅角瓦斯超限问题。在对古书院煤矿15#煤层顶板岩层采动裂隙形成"三带"高度进行研究的基础上,对回风巷高位钻孔布置方案进行优化设计,解决了15#煤层回采工作面上隅区瓦斯浓度超限问题。  相似文献   

5.
马兰矿18305工作面采取在煤层顶板裂隙带布置高抽巷、底板邻近煤层中施工底抽巷方式治理瓦斯,有效解决了工作面瓦斯制约生产的难题。分析了高、底抽巷布置层位与工作面关系,以及高、底抽巷抽采效果,通过高抽巷和底抽巷抽采瓦斯,工作面抽采率大幅提高,可以广泛推广使用。  相似文献   

6.
为了解决义安矿工作面瓦斯涌出量大,上隅角瓦斯浓度经常超限问题,依据覆岩采动裂隙演化规律和"O"形圈理论,提出在工作面顶板布置高抽巷抽采采空区瓦斯,通过理论计算与数值模拟对采空区上覆岩层"两带"高度范围进行研究,确定裂隙带发育范围。而为了防止高抽巷被破坏,将高抽巷的设计层位选定为1.5倍采高。  相似文献   

7.
针对某矿瓦斯含量较大,严重影响矿井生产的问题,运用理论分析并结合FLAC3D数值模拟等方法,对17#煤层高位瓦斯抽采巷层位布置进行研究。通过对煤层的开挖,分析上覆岩层不同高度位置的应力释放情况,得出在离顶板20m处的应力得到完全释放,在离顶板35 m处和50 m处的应力为原岩应力的一半。结合经验公式计算得出25m的裂隙带高度,最后推断出距离煤层顶板25~50 m范围为裂隙带,该范围内的岩层适合布置高位瓦斯抽采巷,为矿井布置抽采巷利用"卸压增流效应"治理瓦斯提供了基础。  相似文献   

8.
为了研究高抽巷合理的布置位置,根据淮南矿区刘庄煤矿13-1煤的实际开采条件和上覆岩层特征,采用理论计算、相似模拟试验和现场施工观测等方法,研究分析了高抽巷合理的布置层位和对瓦斯抽采效果的影响。结果表明:13-1煤工作面冒落带高度约是采高的4倍、裂隙带高度约是采高的16倍,高抽巷合理布置层位约为距煤层顶板42m。  相似文献   

9.
以山西省南部一高瓦斯低渗透性厚煤层回采工作面为研究对象,采用理论分析、数值计算相结合的研究方法,对回采工作面采场上覆岩层"三带"分布进行了研究,确定了裂隙带高度,并在此基础上,选取了高抽巷的最优层位,即沿2号煤层底板布置高抽巷。应用结果表明,该层位是高抽巷布置的合理层位。  相似文献   

10.
采空区顶板高位走向长钻孔高效抽采瓦斯机理研究   总被引:4,自引:0,他引:4  
为了提高采空区顶板高位走向长钻孔瓦斯抽采效率,消除工作面上隅角瓦斯超限事故,以山西华晋吉宁煤业有限责任公司2102综采工作面为研究对象,采用数值模拟、理论分析与现场试验相结合的方法,利用3DEC软件模拟计算2102综采工作面回采期间采空区顶板裂隙场演化过程,根据裂隙场、应力场和应变场分布模拟结果在沿工作面推进方向上划分采空区顶板裂隙加强区范围与压实区范围,工作面推进期间煤层顶板在时间上先后经历裂隙加强区和重新压实区,处于裂隙加强区的钻孔部分为钻孔高效抽采作用区域,钻孔高效抽采段长度与钻孔高效抽采段裂隙发育程度共同决定高位走向长钻孔抽采效率,揭示了采空区顶板高位走向长钻孔高效抽采瓦斯作用机制;在此基础上,在采空区顶板裂隙带高度范围内布置多个高位试验钻孔,进行钻孔瓦斯抽采效果考察,研究结果表明:在保证高位钻孔布置于回风巷内侧顶板裂隙带前提下,最佳布孔层位为距煤层底板60 m左右,同时在高位试验钻孔作用下,上隅角瓦斯体积分数最大值由1.1%降低至0.6%,说明根据回风巷内侧采空区顶板裂隙带高度范围,布置高位走向长钻孔能显著降低上隅角瓦斯浓度。  相似文献   

11.
基于大倾角突出煤层群顶板岩层瓦斯抽采困难问题和保护层工作面回风隅角瓦斯超限问题,以湖南省蛇形山煤矿2344工作面为例,根据矿山压力及其控制理论,确定了保护层工作面顶板"三带"的合理高度,初步试验了大倾角突出煤层群岩层高位巷与高位钻孔瓦斯抽采技术。揭示了保护层工作面顶板岩层中采用高位巷与高位钻孔瓦斯抽采技术的区别,其中高位钻孔抽采的瓦斯浓度可达99. 9%,高位钻孔优于高位巷,同时,在工作面顶板岩层中采用钻场钻孔的布置方式,不影响保护层工作面的正常生产,改变了大倾角煤层群保护层工作面瓦斯在本煤层抽采的模式。  相似文献   

12.
为解决高瓦斯综采工作面瓦斯超限问题,针对赵庄煤矿1307工作面实际地质条件和开采技术水平,提出在工作面顶板布置走向高抽巷抽采瓦斯。为合理布置高抽巷,通过修正经验公式进行理论计算,利用FLAC~(3D)模拟顶板覆岩运动,结合钻孔流量法现场观测得出垮落带最大高度为25.15 m,裂隙带最大高度为75 m,并确定高抽巷与煤层顶板垂距为30 m。通过对回风巷和高抽巷进行巷道应力分析,并考虑岩层垮落角的影响,选取高抽巷与回风巷水平错距为25 m。工程实践证明:高抽巷在抽采期间,抽采瓦斯纯量和浓度都保持在较高值,其大小波动受到工作面周期来压和地质条件影响;工作面回采期间,上隅角和回风巷瓦斯浓度都保持在较低值,避免了瓦斯超限问题。  相似文献   

13.
为研究坚硬顶板在开采扰动作用下三带发育特征,利用数值模拟软件UDEC对晋煤集团赵庄矿1307采煤工作面覆岩三带高度进行了研究,重点分析了采场上覆岩层在煤层采动后的裂隙、应力和位移的动态变化情况。研究结果表明:在开采扰动下煤层顶板开切眼后方和工作面前方存在应力集中现象。研究结果对煤层高抽巷布置、瓦斯高位抽采钻孔层位确定等瓦斯治理工程具有一定的指导作用。  相似文献   

14.
根据对采空区覆岩裂隙发育及瓦斯运移情况进行分析,在开采煤层顶板采动裂隙带内布置高位瓦斯抽排巷抽采采空区卸压瓦斯,合理确定高抽巷设置层位,通过对高抽巷抽采厚煤层综采工作面瓦斯的抽采效果考察,结果表明,高抽巷瓦斯抽采有效保证了工作面安全高效生产,对类似条件下的工作面瓦斯治理具有一定的借鉴意义。  相似文献   

15.
煤矿开采过程中,岩层遭到破坏,采空区上方出现了明显的"三带"特征,详细掌握岩层"三带"分布规律,有利于较为定量的分析采空区瓦斯赋存和导水裂隙带高度,并能分析采空区对临近工作面及临近巷道的影响,从而为高、低位抽采巷(顶板高、低位钻孔)层位布置,临近工作面及临近巷道布置提供依据。通过对阳煤集团新大地煤矿综放工作面采空区建立覆岩变形破坏数值模型,得出采空区"三带"高度分布规律,从而指导矿井在相似开采条件下选择高、低位抽采巷和顶板高、低位钻孔布置层位,进而取得较好的瓦斯抽采效果。  相似文献   

16.
为了对高瓦斯工作面采空区抽采钻场进行设计,使采空区及工作面上隅角瓦斯得到有效控制,通过数值模拟分析了采场覆岩结构及裂隙发育规律;根据模拟结果利用实验室试验分析了抽采钻孔在不同位置时采空区瓦斯的运移规律,得出终孔位置距煤层顶板上方30m左右,距回风巷水平距离10~20m时抽采效果最佳;且终孔高度应根据工作面覆岩结构形态有所区别,靠近回风巷的钻孔高度应控制在规则冒落带上部,靠近工作面中部的钻孔应布置在裂隙带内。  相似文献   

17.
《煤矿开采》2016,(6):77-80
为了研究高抽巷合理的布置位置,根据淮南矿区13-1煤的实际开采条件和上覆岩层特征,采用理论计算、相似模拟试验和现场施工观测等方法,研究分析了高抽巷合理的布置层位和对瓦斯抽采效果的影响。结果表明:13-1煤工作面垮落带高度约是采高的4倍、裂缝带高度约是采高的16倍,高抽巷合理布置层位约为距煤层顶板42m,利用相似模拟材料试验结果来确定高抽巷布置层位更为合理。  相似文献   

18.
《煤炭技术》2017,(12):53-56
为保证21602工作面的安全回采,依据M6煤层埋深浅、顶板复合关键层的赋存条件,借助覆岩矿压规律、关键层理论及AE效应,构建采动裂隙区分布规律及主关键层破断处的块体结构模型,获取了导水裂隙带的高度及顶板高抽巷布置的位置;借助于非线性多元回归理论实施误差修正得到了底抽巷位于距离M6煤层11.02 m的细砂岩内。借助FLAC3D差分软件对比了高抽巷、底抽巷在采动影响下应力分布情况,优先选择了底抽巷,在20 k Pa抽采负压下,选择抽采半径2 m,最终保证了工作面的安全回采。  相似文献   

19.
针对王坡煤矿工作面"U+I"通风方式下瓦斯尾巷取消后面临的上隅角瓦斯治理问题,在高抽巷抽采的基础上提出了利用顶板走向低位抽采巷对上隅角瓦斯进行治理的方法。对顶板走向低位抽采巷抽采机理进行分析,给出了低位抽采巷设计原则,采用理论计算、裂隙带层位考察和顶板岩性分析的方法综合确定王坡煤矿低位抽采巷布置层位。并在3210工作面开展了顶板走向低位抽采巷试验,结果表明,低位抽采巷可有效拦截抽采涌向工作面上隅角的瓦斯,回采期间上隅角瓦斯浓度保持在较低水平,低位抽采巷对上隅角瓦斯治理效果明显,有效促进了工作面的安全回采。  相似文献   

20.
王亮 《中州煤炭》2019,(3):33-35,59
随着工作面推进速度的加快及工作面生产能力的逐渐提高,导致工作面瓦斯涌出量增大,瓦斯是煤矿生产的主要危险源。从理论分析、数值模拟和现场实际相结合的方法,对工作面瓦斯涌出、竖直三带划分特征进行分析,然后数值模拟分析了不同层位参数下高抽巷瓦斯抽采效果。研究得出:该煤矿瓦斯主要包括煤壁瓦斯涌出、采空区瓦斯涌出和采落煤瓦斯涌出;经过多次周期来压后,在采空区形成了采动裂隙“O”形圈;由硬覆岩岩性的经验公式计算煤矿裂隙带最大高度为75~85 m、垮落带距煤层顶板最大高度为30~40 m;选择H=40 m,L=25 m时,能够达到最优抽采效果。对高抽巷合理层位的选择以及优化,是确保高抽巷高效、安全抽采的有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号