首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human neutrophil NADPH oxidase is a multi-component complex composed of membrane-bound and cytosolic proteins. During activation, cytosolic proteins p47(phox), p67(phox), Rac2, and possibly p40(phox) translocate to the plasma membrane and associate with flavocytochrome b to form the active superoxide-generating system. To further investigate the role of p67(phox) in this complex assembly process, experiments were performed to identify possible regions of interaction between p67(phox) and other NADPH oxidase proteins. Using random sequence peptide phage-display library analysis of p67(phox), we identified a novel region in p47(phox) encompassing residues 323-332 and a previously identified SH3 binding domain encompassing p47(phox) residues 361-370 as p67(phox) binding sites. Synthetic peptides mimicking p47(phox) residues 323-332 inhibited the p47(phox)-p67(phox) binding interaction in an affinity binding assay; however, peptides mimicking flanking regions were inactive. Surprisingly, this same region of p47(phox) was found previously to represent a site of binding interaction for flavocytochrome b (DeLeo, F. R., Nauseef, W. M., Jesaitis, A. J., Burritt, J. B., Clark, R. A., and Quinn, M. T.(1995) J. Biol. Chem. 270, 26246-26251), and this observation was confirmed in the present report using two different in vitro assays that were not evaluated previously. Using affinity binding assays, we also found that p67(phox) and flavocytochrome b competed for binding to p47(phox)after activation, suggesting that prior to full NADPH oxidase assembly the 323-332 region of p47(phox) is associated with p67(phox) and at some point in the activation process is transferred to flavocytochrome b. Thus, taken together our data demonstrate that both p67(phox) and flavocytochrome b utilize a common binding site in p47(phox), presumably at distinct stages during the activation process, and this p47(phox) region plays a key role in regulating NADPH oxidase assembly.  相似文献   

2.
Vitamin E (alpha-tocopherol), one of the most important natural antioxidants, is assumed to be beneficial in the prevention of cardiovascular diseases. alpha-Tocopherol exhibits acyl-peroxyl-radical scavenger properties and exerts cell-mediated actions in the hemovascular compartment, such as inhibition of superoxide anion (O-2) production by leukocytes. The aim of this study was to examine the mechanism underlying the inhibitory effect of alpha-tocopherol on O-2 production by human monocytes. In activated monocytes O-2 is produced by the NADPH-oxidase enzyme complex. The oxidase activation elicited by phorbol myristate acetate (PMA) requires membrane translocation of several cytosolic factors. We found that in human PMA-stimulated adherent monocytes, alpha-tocopherol (but not beta-tocopherol) inhibited O-2 production in intact cells but had no effect on a membrane preparation containing activated NADPH-oxidase, suggesting that alpha-tocopherol impairs the assembly process of the enzyme complex. We showed that translocation and phosphorylation of the cytosolic factor p47(phox) were reduced in monocytes preincubated with alpha-tocopherol. We verified that the tryptic phosphopeptide map of monocyte p47(phox) was similar to that of neutrophil p47(phox), indicating that several serine residues were phosphorylated. Peptides whose phosphorylation is dependent on protein kinase C (PKC) were phosphorylated to a lesser degree when p47(phox) was immunoprecipitated from alpha-tocopherol-treated monocytes. In vitro, the activity of PKC from monocytes was inhibited by alpha-tocopherol in a specific manner compared with that of beta-tocopherol or Trolox(R). Membrane translocation of PKC was not affected. These results show that alpha-tocopherol inhibits O-2 production by human adherent monocytes by impairing the assembly of the NADPH-oxidase and suggest that the inhibition of phosphorylation and translocation of the cytosolic factor p47(phox) results from a decrease in PKC activity.  相似文献   

3.
The phagocyte NADPH oxidase is activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants. The activation involves assembly of membrane-integrated cytochrome b558 comprising gp91(phox) and p22(phox), two specialized cytosolic proteins (p47(phox) and p67(phox)), each containing two Src homology 3 (SH3) domains, and the small G protein Rac. In the present study, we show that the N-terminal SH3 domain of p47(phox) binds to the C-terminal cytoplasmic tail of p22(phox) with high affinity (KD = 0.34 microM). The binding is specific to this domain among several SH3 domains including the C-terminal one of p47(phox) and the two of p67(phox) and requires the Pro156-containing proline-rich sequence but not other putative SH3 domain-binding sites of p22(phox). Replacement of Trp193 by Arg in the N-terminal SH3 domain completely abrogates the association with p22(phox). A mutant p47(phox) with this substitution is incapable of supporting superoxide production under cell-free activation conditions. These findings provide direct evidence that the interaction between the N-terminal SH3 domain of p47(phox) and the proline-rich region of p22(phox) is essential for activation of the NADPH oxidase.  相似文献   

4.
The superoxide-generating NADPH oxidase, dormant in resting phagocytes, is activated during phagocytosis following assembly of the membrane-integrated protein cytochrome b558 and cytosolic factors. Among the latter are the three proteins containing Src homology 3 (SH3) domains, p67phox, p47phox and p40phox. While the first two factors are indispensable for the activity, p40phox is tightly associated with p67phox in resting cells and is suggested to have some modulatory role. Here we describe a systematic analysis of the interaction between p40phox and p67phox using the yeast two-hybrid system and in vitro binding assays with recombinant proteins. Both methods unequivocally showed that the minimum requirements for stable interaction are the C-terminal region of p40phox and the region between the two SH3 domains of p67phox. This interaction is maintained even in the presence of anionic amphiphiles used for the activation of the NADPH oxidase, raising a possibility that it mediates constitutive association of the two factors in both resting and activated cells. The C-terminal region of p40phox responsible for the interaction contains a characteristic stretch of amino acids designated as the PC motif, that also exists in other signal-transducing proteins from yeast to human. Intensive site-directed mutagenesis to the motif in p40phox revealed that it plays a critical role in the binding to p67phox. Thus the PC motif appears to represent a novel module for protein-protein interaction used in a variety of signaling pathways.  相似文献   

5.
We have identified the site of molecular interaction between nitric oxide (NO) and p21(ras) responsible for initiation of signal transduction. We found that p21(ras) was singly S-nitrosylated and localized this modification to a fragment of p21(ras) containing Cys118. A mutant form of p21(ras), in which Cys118 was changed to a serine residue and termed p21(ras)C118S, was not S-nitrosylated. NO-related species stimulated guanine nucleotide exchange on wild-type p21(ras), resulting in an active form, but not on p21(ras)C118S. Furthermore, in contrast to parental Jurkat T cells, NO-related species did not stimulate mitogen-activated protein kinase activity in cells transfected with p21(ras)C118S. These data indicate that Cys118 is a critical site of redox regulation of p21(ras), and S-nitrosylation of this residue triggers guanine nucleotide exchange and downstream signaling.  相似文献   

6.
Antifreeze proteins (AFPs) have the unique ability to adsorb to ice and inhibit its growth. Many organisms ranging from fish to bacteria use AFPs to retard freezing or lessen the damage incurred upon freezing and thawing. The ice-binding mechanism of the long linear alpha-helical type I AFPs has been attributed to their regularly spaced polar residues matching the ice lattice along a pyramidal plane. In contrast, it is not known how globular antifreeze proteins such as type III AFP that lack repeating ice-binding residues bind to ice. Here we report the 1.25 A crystal structure of recombinant type III AFP (QAE isoform) from eel pout (Macrozoarces americanus), which reveals a remarkably flat amphipathic ice-binding site where five hydrogen-bonding atoms match two ranks of oxygens on the [1010] ice prism plane in the <0001> direction, giving high ice-binding affinity and specificity. This binding site, substantiated by the structures and properties of several ice-binding site mutants, suggests that the AFP occupies a niche in the ice surface in which it covers the basal plane while binding to the prism face.  相似文献   

7.
In the spliceosome, the pre-mRNA, U2 and U6 snRNAs fold into a catalytic structure exhibiting striking similarities with domain V and VI of group II introns. Building of this tripartite structure implies that an evolutionary conserved base pairing between U4 and U6 snRNAs should be disrupted to allow potentially U6 catalytic residue to interact with U2 snRNAs and the pre-mRNA. The steps leading to U4/U6 disruption have been recently discovered and have been shown to involve a modification of the 3' end of U6 snRNA and the hnRNP C protein.  相似文献   

8.
The regulation of vesicular transport in eukaryotic cells involves Ras-like GTPases of the Ypt/Rab family. Studies in yeast and mammalian cells indicate that individual family members act in vesicle docking/fusion to specific target membranes. Using the two-hybrid system, we have now identified a 248 amino acid, integral membrane protein, termed Yip1, that specifically binds to the transport GTPases Ypt1p and Ypt31p. Evidence for physical interaction of these GTPases with Yip1p was also demonstrated by affinity chromatography and/or co-immunoprecipitation. Like the two GTPases, Yip1p is essential for yeast cell viability and, according to subcellular fractionation and indirect immunofluorescence, is located to Golgi membranes at steady state. Mutant cells depleted of Yip1p and conditionally lethal yip1 mutants at the non-permissive temperature massively accumulate endoplasmic reticulum membranes and display aberrations in protein secretion and glycosylation of secreted invertase. The results suggests for a role for Yip1p in recruiting the two GTPases to Golgi target membranes in preparation for fusion.  相似文献   

9.
Integrins are a large family of transmembrane receptors that, in addition to mediating cell adhesion, modulate cell proliferation. The beta1C integrin is an alternatively spliced variant of the beta1 subfamily that contains a unique 48-amino acid sequence in its cytoplasmic domain. We have shown previously that in vitro beta1C inhibits cell proliferation and that in vivo beta1C is expressed in nonproliferative, differentiated epithelium and is selectively downregulated in prostatic adenocarcinoma. Here we show, by immunohistochemistry and immunoblotting analysis, that beta1C is coexpressed in human prostate epithelial cells with the cell-cycle inhibitor p27(kip1), the loss of which correlates with poor prognosis in prostate cancer. In the 37 specimens analyzed, beta1C and p27(kip1) are concurrently expressed in 93% of benign and 84%-91% of tumor prostate cells. Forced expression of beta1C in vitro is accompanied by an increase in p27(kip1) levels, by inhibition of cyclin A-dependent kinase activity, and by increased association of p27(kip1) with cyclin A. beta1C inhibitory effect on cell proliferation is completely prevented by p27(kip1) antisense, but not mismatch oligonucleotides. beta1C expression does not affect either cyclin A or E levels, or cyclin E-associated kinase activity, nor the mitogen-activated protein (MAP) kinase pathway. These findings show a unique mechanism of cell growth inhibition by integrins and point to beta1C as an upstream regulator of p27(kip1) expression and, therefore, a potential target for tumor suppression in prostate cancer.  相似文献   

10.
Molecular dynamics calculations have been performed to determine the average structures of ras-gene-encoded p21 proteins bound to GTP, i.e., the normal (wild-type) protein and two oncogenic forms of this protein, the Val 12- and Leu 61-p21 proteins. We find that the average structures for all of these proteins exhibit low coordinate fluctuations (which are highest for the normal protein), indicating convergence to specific structures. From previous dynamics calculations of the average structures of these proteins bound to GDP, major regional differences were found among these proteins [Monaco et al. (1995), J. Protein Chem., in press]. We now find that the average structures of the oncogenic proteins are more similar to one another when the proteins are bound to GTP than when they are bound to GDP [Monaco et al. (1995), J. Protein Chem., in press]. However, they still differ in structure at specific amino acid residues rather than in whole regions, in contradistinction to the results found for the p21-GDP complexes. Two exceptions are the regions 25-32, in an alpha-helical region, and 97-110. The two oncogenic (Val 12- and Leu 61-) proteins have similar structures which differ significantly in the region of residues 97-110. This region has recently been identified as being critical in the interaction of p21 with kinase target proteins. The differences in structure between the oncogenic proteins suggest the existence of more than one oncogenic form of the p21 protein that can activate different signaling pathways.  相似文献   

11.
The final step in the biosynthesis of the plant signaling molecule ethylene is catalyzed by 1-aminocyclopropane-1-carboxylate (ACC) oxidase, a member of the non-heme iron(II) dependent family of oxygenases and oxidases, which has a requirement for ascorbate as a co-substrate and carbon dioxide as an activator. ACC oxidase (tomato) has a particularly short half-life under catalytic conditions undergoing metal-catalyzed oxidative (MCO) fragmentation. Sequence comparisons of ACC oxidases with isopenicillin N synthase (IPNS) and members of the 2-oxoglutarate Fe(II) dependent dioxygenases show an aspartate and two of six ACC oxidase conserved histidine residues are completely conserved throughout this subfamily of Fe(II) dependent oxygenases/oxidases. Previous mutagenesis, spectroscopic, and crystallographic studies on IPNS indicate that the two completely conserved histidine and aspartate residues act as Fe(II) ligands. To investigate the role of the conserved aspartate and histidine residues in ACC oxidase (tomato fruit), they were substituted via site-directed mutagenesis. Modified ACC oxidases produced were H39Q, H56Q, H94Q, H177Q, H177D, H177E, D179E, D179N, H177D&D179E, H211Q, H234Q, H234D, and H234E. Among those histidine mutants replaced by glutamine, H39Q, H56Q, H94Q, and H211Q were catalytically active, indicating these histidines are not essential for catalysis. Mutant enzymes H177D, H177Q, D179N, H177D&D179E, H234Q, H234D, and H234E were catalytically inactive consistent with the assignment of H177, D179, and H234 as iron ligands. Replacement of H177 with glutamate or D179 with glutamate resulted in modified ACC oxidases which still effected the conversion of ACC to ethylene, albeit at a very low level of activity, which was stimulated by bicarbonate. The H177D (inactive), H177E (low activity), D179E (low activity), and H234Q (inactive) modified ACC oxidases all underwent MCO fragmentation, indicating that they can bind iron, dioxygen, ACC, and ascorbate. The results suggest that MCO cleavage results from active site-mediated reactions and imply that, while H177, D179, and H234 are all involved in metal ligation during catalysis, ligation to H234 is not required for fragmentation. It is possible that MCO fragmentation results from reaction of incorrectly folded or "primed" ACC oxidase.  相似文献   

12.
The spindle pole body (SPB) in Saccharomyces cerevisiae functions as the microtubule-organizing center. Spc110p is an essential structural component of the SPB and spans between the central and inner plaques of this multilamellar organelle. The amino terminus of Spc110p faces the inner plaque, the substructure from which spindle microtubules radiate. We have undertaken a synthetic lethal screen to identify mutations that enhance the phenotype of the temperature-sensitive spc110-221 allele, which encodes mutations in the amino terminus. The screen identified mutations in SPC97 and SPC98, two genes encoding components of the Tub4p complex in yeast. The spc98-63 allele is synthetic lethal only with spc110 alleles that encode mutations in the N terminus of Spc110p. In contrast, the spc97 alleles are synthetic lethal with spc110 alleles that encode mutations in either the N terminus or the C terminus. Using the two-hybrid assay, we show that the interactions of Spc110p with Spc97p and Spc98p are not equivalent. The N terminus of Spc110p displays a robust interaction with Spc98p in two different two-hybrid assays, while the interaction between Spc97p and Spc110p is not detectable in one strain and gives a weak signal in the other. Extra copies of SPC98 enhance the interaction between Spc97p and Spc110p, while extra copies of SPC97 interfere with the interaction between Spc98p and Spc110p. By testing the interactions between mutant proteins, we show that the lethal phenotype in spc98-63 spc110-221 cells is caused by the failure of Spc98-63p to interact with Spc110-221p. In contrast, the lethal phenotype in spc97-62 spc110-221 cells can be attributed to a decreased interaction between Spc97-62p and Spc98p. Together, these studies provide evidence that Spc110p directly links the Tub4p complex to the SPB. Moreover, an interaction between Spc98p and the amino-terminal region of Spc110p is a critical component of the linkage, whereas the interaction between Spc97p and Spc110p is dependent on Spc98p.  相似文献   

13.
Determining the way in which deleterious mutations interact in their effects on fitness is crucial to numerous areas in population genetics and evolutionary biology. For example, if each additional mutation leads to a greater decrease in log fitness than the last (synergistic epistasis), then the evolution of sex and recombination may be favored to facilitate the elimination of deleterious mutations. However, there is a severe shortage of relevant data. Three relatively simple experimental methods to test for epistasis between deleterious mutations in haploid species have recently been proposed. These methods involve crossing individuals and examining the mean and/or skew in log fitness of the offspring and parents. The main aim of this paper is to formalize these methods, and determine the most effective way in which tests for epistasis could be carried out. We show that only one of these methods is likely to give useful results: crossing individuals that have very different numbers of deleterious mutations, and comparing the mean log fitness of the parents with that of their offspring. We also reconsider experimental data collected on Chlamydomonas moewussi using two of the three methods. Finally, we suggest how the test could be applied to diploid species.  相似文献   

14.
It is believed that a monoamine oxidase (MAO) inhibitor specific for MAO A, which is reversibly bound to this enzyme and displaceable by tyramine, will be an antidepressant which will not cause a rise in blood pressure when tyramine-containing foods are ingested. Some linear tricyclic compounds with a larger and a smaller group forming the central ring and with a lipophilic group ortho to the larger group (here mostly the SO2 function of phenoxathiin 10,10-dioxide) are reported to have the sought properties. Potency appears to require short length and relatively small cross section for the substituent. The 1-ethyl (13), 1-vinyl (22), 1-trifluoromethyl (27), and 1-iodo (76) phenoxathiin dioxides had the best profiles. Structure-activity relationships, syntheses, and a possible rationale for the selectivity of these compounds and related tricyclics are given. Compound 13 was selected for further development. A summary of pharmacological data for 13 is given.  相似文献   

15.
The sequence 5'-rUUGGCG-3' is conserved within the loop regions of antisense RNAs or their targets involved in replication of various prokaryotic plasmids. In IncIalpha plasmid ColIb-P9, the partially base paired 21-nucleotide loop of a stem-loop called structure I within RepZ mRNA contains this hexanucleotide sequence, and comprises the target site for the antisense Inc RNA. In this report, we find that the base pairing interaction at the 5'-rGGC-3' sequence in the hexanucleotide motif is important for interaction between Inc RNA and structure I. In addition, the 21-base loop domain of structure I is folded tighter than predicted, with the hexanucleotide sequence at the top. The second U residue in the sequence is favored for Inc RNA binding in a base-specific manner. On the other hand, the upper domain of the Inc RNA stem-loop is loosely structured, and maintaining the loop sequence single-stranded is important for the intermolecular interaction. Based on these results, we propose that a structural feature in the loop I domain, conferred probably by the conserved 5'-rUUGGCG-3' sequence, favors binding to a complementary, single-stranded RNA. This model also explains how the RepZ mRNA pseudoknot, described in the accompanying paper (Asano, K., and Mizobuchi, K. (1998) J. Biol. Chem. 273, 11815-11825) is formed specifically with structure I. A possible conformation adopted by the 5'-rUUGGCG-3' loop sequence is discussed.  相似文献   

16.
We have identified the sites of neural crest cell interaction with laminin in vitro by examining their ability to attach to and migrate on proteolytic fragments of the molecule and the ability of fragment-specific antibodies to inhibit these interactions. The binding site on laminin was localized to the E8 domain on the long arm of laminin, as well as the T8' fragment within this domain, but not the E1', E3, or E4 fragments. Only subfragments containing the carboxy-terminal rod-like portion of the A chain plus the corresponding B1 and B2 chains retained the attachment-promoting activity of the parent E8 fragment. In addition, interactions required maintenance of the triple-stranded and alpha-helical coiled-coil structure of this domain. Reduction and alkylation of laminin and the E8 and T8 fragments significantly reduced neural crest cell attachment and migration. An antiserum against chick alpha 1 integrin reduced migration and adhesion of neural crest cells on an intact laminin-nidogen complex, the E8 fragment, and all its active subfragments. Furthermore, we observed that neural crest cells modified laminin substrata prepared in the absence of divalent cations. Early stable attachment to these substrata was mediated by an integrin other than alpha 1, whereas later attachment and migration were mediated by alpha 1 integrins. Our results suggest that neural crest cells selectively bind to the B1-A-B2 mid-portion (T8') of the E8 domain of laminin, requiring structural integrity of this region and that they modify laminin substrata as a result of prolonged cell-matrix interactions.  相似文献   

17.
Based on single residue substitutions, previous studies suggested that Gln165, His197, and His265 of the neurokinin-1 receptor interact directly with many nonpeptide antagonists, including CP-96,345. To further test this model, all three residues have been substituted simultaneously with alanine. The Q165A-H197A-H265A triple mutant bound CP-96,345 and eight analogs with similar affinity (2-20 microM), even though the same series of compounds bound to the wild-type receptor with affinities over a range of 1000-fold. These observations correspond exactly to the prediction of the binding site model. The micromolar binding affinity of all tested CP-96,345 analogs for the triple mutant seems to reflect solely van der Waals interactions, which suggests a significant contribution of conformational compatibility (or shape complementarity) to binding affinity. The primary role of conformational compatibility in ligand binding was consistent with the observation that simply transferring the residues involved in polar interactions with beta2-agonists into the neurokinin-1 receptor did not lead to increased binding affinity for the beta2-agonists. Taken together, these results support a general principle of ligand-receptor binding in which specific polar interactions can take place only if the overall ligand conformation is compatible with the stereochemistry of the binding pocket. In addition, double-residue and triple-residue substitutions, in combination with single-residue substitutions, can provide an alternative route to reveal multiple interactions that may not be detectable by single-residue substitutions and represent a novel approach to examine ligand-receptor interactions in the absence of high-resolution structural data.  相似文献   

18.
The exchangeable nucleotide-binding site of tubulin has been studied using diastereoisomers A (Sp) and B (Rp) of guanosine 5'-O-(1-thiotriphosphate) (GTP alpha S) in which the phosphorus atom to which sulfur is attached is chiral. GTP alpha S(A) (10 microM) nucleated assembly of purified tubulin (20 microM) into microtubules in buffer containing 0.1 M 2-(N-morpholino)ethanesulfonic acid with 3 mM Mg2+ and 1 mM EGTA, pH 6.6 at 37 degrees C. With 0.2 mM GTP alpha S(A), the critical concentration (Cc; minimum protein concentration required for assembly) was 8 microM tubulin. Neither 0.2 mM GTP nor GTP alpha S(B) promoted microtubule assembly in buffer with 0.5-6.75 mM Mg2+ and 20-70 microM tubulin. The Cc values for GTP alpha S-(A)-induced assembly of tubulin in buffer with 30% glycerol and of microtubule protein (tubulin and microtubule-associated proteins) in buffer were lower than for GTP. GTP alpha S(A)-induced microtubules were more stable to the cold and to Ca2+. GTP alpha S(A) and GTP but not GTP alpha S(B) bound tightly to tubulin at 4 degrees C. Although GTP alpha S(B) did not nucleate assembly, it did bind to tubulin since it was incorporated into the growing microtubule. Both isomers were hydrolyzed in the microtubules. These studies show that GTP alpha S(A) promotes tubulin assembly better than GTP and GTP alpha S(B) and that there is stereoselectivity at the alpha-phosphate binding region of tubulin. The stereoselectivity may be due to different MgGTP alpha S(A) and -(B) interactions with tubulin.  相似文献   

19.
Genetic analysis of microtubule functions in the yeast Saccharomyces cerevisiae suggests that cells manage the levels and activities of the tubulin polypeptides. These reactions may be involved in protein folding, formation of the heterodimer, and maintenance of the appropriate balance between alpha- and beta-tubulin. One protein involved in these functions is Rbl2p, which forms a complex with beta-tubulin. Here we describe the identification of a novel yeast gene, LUV1 [corrected], that interacts genetically with RBL2. Deletion of rki1 causes conditional defects in microtubule assembly and cell growth. Luv1p [corrected] can be isolated in a complex containing Rbl2p. The results support the existence of cellular mechanisms for regulating microtubule function through the tubulin polypeptides.  相似文献   

20.
Activation of the beta2- and alpha2-adrenergic receptors (AR) involves hydrogen bonding of serine residues in the fifth transmembrane segment (TMV) to the catechol hydroxyls of the endogenous agonists, epinephrine and norepinephrine. With the beta2-AR both Ser204 and Ser207 but not a third TMV serine (Ser203) are required for binding and full agonist activity. However, with the alpha2a-AR only one of two TMV serines (Ser204, equivalent to Ser207 in the beta-AR) appears to contribute partially to agonist-binding and activation. Because the alpha1a-AR uniquely contains only two TMV serines, this subtype was used to systematically evaluate the role of hydrogen bonding in alpha1-AR activation. Binding of epinephrine or its monohydroxyl congeners, phenylephrine and synephrine, was not decreased when tested with alanine- substitution mutants that lacked either Ser188 (Ser188--> Ala) or Ser192 (Ser192-->Ala). With the substitution of both serines in the double mutant, Ser188/192-->Ala, binding of all three ligands was significantly reduced (10- 100-fold) consistent with a single hydrogen bond interaction. However, receptor-mediated inositol phosphate production was markedly attenuated only with the Ser188-->Ala mutation and not with Ser192-->Ala. In support of the importance of Ser188, binding of phenylephrine (meta-hydroxyl only) by Ser192-->Ala increased 7-fold over that observed with either the wild type receptor or the Ser188-->Ala mutation. Binding of synephrine (para-hydroxyl only) was unchanged with the Ser192-->Ala mutation. In addition, when combined with a recently described constitutively active alpha1a-AR mutation (Met292-->Leu), only the Ser188-->Ala mutation and not Ser192-->Ala relieved the high affinity binding and increased agonist potency observed with the Met292-->Leu mutation. A simple interpretation of these findings is that the meta-hydroxyl of the endogenous agonists preferentially binds to Ser188, and it is this hydrogen bond interaction, and not that between the para-hydroxyl and Ser192, that allows receptor activation. Furthermore, since Ser188 and Ser192 are separated by three residues on the TMV alpha-helix, whereas Ser204 and Ser207 of the beta2-AR are separated by only two residues, the orientation of the catechol ring in the alpha1-AR binding pocket appears to be unique and rotated approximately 120 degrees to that in the beta2-AR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号