首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
聚乙二醇-4000包覆Fe3O4磁流体的制备及稳定性研究   总被引:7,自引:1,他引:7  
通过共沉淀法成功制备出聚乙二醇-4000(PEG-4000)包覆的Fe3O4磁流体,用XRD表征了磁性粒子的物相和粒径,研究了磁流体中Fe3O4的质量浓度以及溶液pH值对磁流体稳定性的影响。结果表明:未包覆的磁流体粒径为20nm,而包覆后的磁流体粒径为11.5nm;磁流体的稳定性随着质量浓度的增加而下降;在pH-3~8的溶液中,磁流体的稳定性随着pH的增加而降低。  相似文献   

2.
表面活性剂对磁流体稳定性及外层包覆结构的影响   总被引:1,自引:0,他引:1  
采用化学共沉淀法制备粒径分布均匀的纳米Fe3O4颗粒,用油酸钠和聚乙二醇4000(PEG4000)对纳米Fe3O4颗粒进行表面修饰,制得分散稳定的纳米Fe3O4磁流体,通过电动电位(Zeta电位)、粒径测试、离心沉淀、红外光谱分析(FT-IR)和热分析(TG)对修饰后的纳米Fe3O4颗粒进行了稳定性能评价与结构表征。结果表明,油酸钠与纳米Fe3O4颗粒存在两种不同类型的化学键作用;增大油酸钠加入量不会改变Fe3O4颗粒表面包覆结构,但是,其在纳米Fe3O4颗粒表面的吸附量呈先增加后降低的趋势;PEG4000物理吸附于油酸钠包覆的纳米Fe3O4颗粒表面,PEG4000的加入会进一步提高磁流体的稳定性。  相似文献   

3.
采用化学共沉淀法制备了Fe3O4纳米颗粒,以PEG-4000为表面活性剂进行表面修饰,制备了分散性良好的纳米Fe3O4磁流体.磁流体存在时,采用分散聚合法,以苯乙烯为单体制备了磁性高分子微球.TEM研究表明,Fe3O4纳米颗粒的平均粒径约为10nm,分散聚合所制备的磁性聚苯乙烯微球的平均粒径约为80nm;VSM研究表明,合成的Fe3O4纳米颗粒及磁性聚苯乙烯微球具有超顺磁性;FT-IR研究表明,Fe3O4纳米颗粒很好地包覆于聚苯乙烯中;XRD结果表明,分散聚合前后,Fe3O4纳米颗粒的晶体结构没有发生变化.  相似文献   

4.
王海成  汪凡曦  于广华 《功能材料》2012,43(8):1034-1037
利用水解共沉淀法制备了Fe3O4纳米颗粒,研究了温度和pH值对Fe3O4纳米颗粒粒径、形貌的影响关系。研究结果表明,反应温度从30℃升高到90℃,Fe3O4颗粒的粒径从6~8nm增大到10~12nm;同时,Fe3O4颗粒的饱和磁矩也随着Fe3O4颗粒粒径的增加而升高。溶液pH值会影响Fe3O4纳米颗粒的形状,高pH值易使合成的Fe3O4纳米颗粒为四方形,随着pH值的降低,Fe3O4纳米颗粒向球形转变。Fe3O4纳米颗粒的粒径和形状的可控性为进一步合成、调控Fe3O4电磁功能复合材料奠定了良好基础。  相似文献   

5.
Fe_3O_4磁流体制备及磁性能研究   总被引:2,自引:0,他引:2  
采用共沉淀法制备了3种不同粒径的Fe3O4纳米粒子,并分别将其分散在水中制备成磁流体.采用超导量子干涉仪分别测量了不同粒径磁粒子及其磁流体的磁性能.实验结果显示:粉末状Fe3O4粒子的比饱和磁化强度和矫顽力均随粒径的增加而增大;磁流体中的磁粒子比饱和磁化强度也随着粒径的增加而增大,但3种样品的矫顽力均为零,显示出超顺磁性;相同粒径的Fe3O4粒子,在磁流体中的比饱和磁化强度较粉末状态时为低.  相似文献   

6.
采用化学共沉淀法制备纳米Fe3O4磁性颗粒,并用油酸钠对其进行包覆改性,以煤油为基液制备出煤油基Fe3O4磁流体。对比分析了pH值=5和10.5条件下油酸钠包覆的Fe3O4磁性颗粒的性能差异,得出油酸钠在pH值=5时可以更好地包覆在Fe3O4磁性颗粒表面,其饱和磁化强度为58.0A·m2/kg,在此基础上制备出的磁流体的饱和磁化强度为20.2A·m2/kg,并且Fe3O4磁性颗粒分散较均匀。而油酸钠在pH值=10.5时包覆的Fe3O4磁性颗粒,其饱和磁化强度虽然高一些(67.8A·m2/kg),但制备出的磁流体稳定性较差,出现较为明显的沉降现象。  相似文献   

7.
采用化学共沉淀法制备了葡聚糖包覆的纳米Fe3O4颗粒,平均粒径为6nm,包覆层厚度约为3~5nm,纳米Fe3O4粒径分布较窄.红外光谱分析可知,葡聚糖与纳米Fe3O4主要以氢键结合,结合Zeta电位和热重分析,分散作用主要是空间位阻作用,葡聚糖的包覆量约为10%.吸光度测试表明,随着葡聚糖用量的增加,悬浮液的稳定性提高.用量为25%时,悬浮液在室温下静止1周,无分层现象.包覆样的饱和磁化强度为60emu/g,具有良好的超顺磁性.  相似文献   

8.
以FeCl3·6H2O和FeSO4·7H2O为铁源,采用化学共沉淀法制备纳米级Fe3O4磁颗粒,并用油酸钠对其进行表面包覆;将包覆后的Fe3O4磁颗粒在真空干燥箱中加热氧化,通过氧化时间的控制得到部分氧化的γ-Fe2O3/Fe3O4复合磁性颗粒以及完全氧化的γ-Fe2O3磁性颗粒;以硅油为载液制备出Fe3O4磁流体A、γ-Fe2O3磁流体B、部分氧化的γ-Fe2O3/Fe3O4复合磁流体C。研究发现Fe3O4磁颗粒尺寸分布较窄,尺寸的单分散性好,平均粒径在10nm左右,整体上呈现为类球形;Fe3O4磁颗粒部分和完全氧化制得的磁颗粒的粒径和形貌并无明显变化,粒径仍为10nm左右,整体上也呈现为类球形。测试结果表明,样品A、B和C的饱和磁化强度分别达到12.45,14.25和25.08A·m2/kg,且它们在外加磁场下均呈现出良好的各向异性。  相似文献   

9.
用水热法制备了Fe3O4纳米磁流体样品,测试了样品对磁场的响应度,利用原子力显微镜表征分析磁流体的微结构特征,观测了磁流体材料颗粒粒径大小及形貌,且重点分析了磁特性与微结构的关系。分析结果表明,制备的Fe3O4纳米磁流体粒径大小约为5.00nm;不同质量分数的配比影响着磁流体对磁场的响应度,质量分数为10%时的响应度最高;磁流体所表现的磁特性与链状微结构变化紧密相关,纳米颗粒在Fe3O4磁流体中的分布情况决定了其链状微结构的变化。  相似文献   

10.
采用化学共沉淀法制备了Fe3O4磁性纳米粒子。以油酸钠为基体的Fe3O4磁流体具有良好的分散效果。利用X衍射仪(XRD)和透射电镜(TEM)分别对磁性粒子的物相、结构及粒径进行了分析,证实其为纯相Fe3O4粒子且粒径约为8nm。采用振动样品磁强计(VSM)测得包覆油酸钠前后的Fe3O4粒子饱和磁化强度(Ms)分别为60...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号