首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
 加载速率对岩石力学性质具有重要影响,影响的程度与岩石本身的微结构和加、卸载应力路径及状态等密切相关。基于静态加载速率范围内的9个不同等级应变率下粗晶大理岩单轴压缩试验,研究加载应变率对岩石的应力–应变曲线、破坏形态、强度、弹性模量及变形模量与应变能耗散及释放的影响规律,探讨岩石损伤演化的能量机制。根据总体积应变及裂纹体积应变与起裂及扩容应力的相关性,确定各应变率下岩石起裂及临界扩容应力。加载应变率大约以1×10-3 s-1为分界点,小于该值时应力–应变曲线峰值点附近仍存在一定的塑性屈服或流动段,超过该值后表现为“折线”型。随着加载应变率的增加,岩样破裂模式由张剪型逐渐过渡到张性劈裂甚至劈裂弹射。一般而言,起裂及临界扩容应力和峰值应力均随加载速率增大而增大,且起裂及临界扩容应力越接近峰值强度,但当应变率为1×10-4~1×10-3 s-1时,上述值均出现一个相对低值区间,这与粗晶大理岩的微结构特征相关。起裂应力、临界扩容应力、弹性模量及变形模量均与峰值强度线性相关。单轴压缩下峰前能量耗散量越多,强度越高,峰后可释放弹性应变能和释放速率越大,岩石的张性贯通破裂特性愈强,破裂块数越多。能量耗散使岩石损伤而强度丧失,而能量释放使岩石宏观破裂面贯通而整体破坏。  相似文献   

2.
为准确得到甘肃北山核废料地质处置区花岗岩围岩强度与变形特征。在MTS815岩石电液伺服机上对花岗岩进行了单轴压缩试验,并对试验结果进行了系统的分析。结果表明:北山花岗岩在单轴压缩条件下形成了平行于轴压方向上的张拉裂纹,而在达到峰值强度后裂纹迅速扩展,并纵向贯通,将岩石分为竖向块体,呈现出脆性破坏特征;将花岗岩石峰前应力应变曲线分为四个阶段,初始压密、弹性变形、裂纹稳定扩展和裂纹非稳定扩展阶段。应用裂纹体积应变模型求得各阶段终止时分别对应岩石的四个特征应力值:起裂应力、弹性应力、损伤应力和峰值应力;依据裂纹体积应变概念,将轴向应变与径向应变分为裂纹应变与弹性应变,提出可以通过比较轴向与径向裂纹应变间的大小来确定其起裂方向。  相似文献   

3.
 为了建立声发射参数与盐岩力学破坏机制的关系,进一步揭示盐岩在不同应变率条件下的损伤演化规律,利用声发射技术对加载应变率分别为2×10-3,2×10-4,2×10-5 s-1下的盐岩损伤演化及声发射参数特征进行试验研究。试验发现:(1) 3种应变率加载条件下盐岩的应力–应变曲线变化趋势接近。随着加载应变率的增加,盐岩弹性极限强度略有增加,峰值强度及其对应的应变值略有变化,达到峰值强度所需的时间呈线性减少。(2) 加载速率越慢,岩石破碎越松散,产生的裂纹越多,出现的累计声发射信号数越多。(3) 加载速率越快,声发射频率越高,脆性破坏特征越明显。声发射信号频率变化幅度反映了盐岩在不同应变率条件下裂纹的生成速度和损伤演化过程,而声发射信号累计振铃数则较好地反映盐岩达到峰值强度前应力–应变曲线关系。盐岩自身透光性的变化在一定程度上反映出损伤分布区域和损伤程度。建立基于声发射信号累计振铃数的盐岩损伤演化方程,较好地反映低应变率盐岩损伤演化过程。  相似文献   

4.
利用单轴压缩试验,研究了裂纹应变随加载速率的变化规律,得到了不同加载速率下黄龙灰岩的起裂应力。黄龙灰岩的起裂应力约为峰值强度的95%以上,裂纹起裂应力随加载速率增加而增加,而且加载速率越高,破坏后的岩石碎块的尺寸越小。根据岩石黄龙灰岩单轴压缩过程的声发射特征,得到了岩石内部微裂纹演化特征。随着裂纹的不断扩展,岩样出现了明显的损伤局部化现象。最后,利用滑移裂纹模型,分析了黄龙灰岩动态损伤演化机制,得到了加载速率与裂纹起裂应力的关系,同时获得了临界裂纹长度与加载速率的关系。  相似文献   

5.
 利用RMT–150B岩石力学试验系统,对细晶大理岩试样在应变速率2×10-5~5×10-3 s-1范围内进行了6级应变速率下的单轴压缩试验,分析应变速率对大理岩应力速率、峰值强度、弹性模量、弱化模量、峰值应变、泊松比、积聚能、释放能以及破裂形式等力学性质的影响。研究结果表明,不同应变速率下单轴压缩过程均经历压密、弹性、屈服和破坏4个阶段。应力速率与应变速率的对数可以用指数形式描述;大理岩的峰值强度与应变速率呈正相关,可采用二次多项式进行描述;大理岩的弹性模量、弱化模量和峰值应变受应变速率影响不大,泊松比与应变速率呈指数关系;试验过程中试样峰值前积聚能量、峰值后释放能量与应变率呈正相关,表明应变率越高微裂纹扩展越严重。在应变速率低于5×10-4 s-1时,试样以剪切破坏为主,随着应变速率的增加,试样破坏模式从局部剪切失稳破坏向全面剪胀失稳破坏转变,在高应变速率下更容易形成锥形破坏。研究结果能够对岩爆防治和工程抗震设计提供一定参考。  相似文献   

6.
采用声波、声发射一体化装置同步测试单轴压缩下花岗岩应力应变、超声波及声发射(AE)特征演化规律,分析岩石特征应力对应的宏–细观表征,通过裂纹体积应变、声发射及声波特征等共同量化岩石损伤演化过程。结果表明:裂纹体积应变和波速对应的损伤起始应力吻合较好,AE事件、幅值分布、b值对应的应力特征值基本一致,但AE事件表征的损伤累积开始早于宏观变形和声波;初始加载阶段波速及各项异性系数K均逐渐增加,之后变化趋缓,起裂应力后侧向波速开始减小,而K逐渐增大;峰值应力前裂纹的快速聚结引起AE信号幅值大幅增加,伴随的是b值的快速下降和AE累积能量的陡增;基于起裂应力后损伤才开始累积的假定,量化并对比了裂纹体应变、AE事件等多参量表征的损伤演化规律,发现花岗岩损伤累积绝大部分发生在损伤应力之后。裂纹体应变表征的损伤具有明确物理意义,但裂纹体应变计算中泊松比选取存在一定主观性,裂纹体应变、AE能量、模量等参数表征的损伤在接近峰值应力前均出现大幅增加,与b值的快速下降对应。综合对比分析,AE能量表征的损伤具有更好的可靠性,反映了岩石损伤破裂的本质特征。  相似文献   

7.
CT尺度砂岩渗流与应力关系试验研究   总被引:2,自引:7,他引:2  
岩石渗流与应力关系研究是进行岩石渗流场与应力场耦合分析的关键。运用岩石高压三轴加载装置和渗透压加载装置,对砂岩进行了渗流与应力关系试验,同时借助SOMATOMPLUS螺旋CT扫描机进行实时观测。通过试验结果分析,推出了基于CT数的岩石孔隙率公式,在此基础上,分析了岩石应力–应变过程中孔隙率、渗透速度、渗流速度、微孔隙直径、渗透率等的变化规律。结果发现:岩石渗透参数的变化与岩石受力损伤–破裂过程密切相关。在初期的压密阶段,岩石的孔隙率、渗透速度、渗流速度、微孔隙直径、渗透率等随应力的增大而减小;当岩石的内部出现微裂纹后,岩石的孔隙率、渗透速度、渗流速度、微孔隙直径、渗透率等随应力的增大而增大,从宏观应力–应变关系看,从微裂纹出现到宏观破坏出现前,岩石还处于弹性变形阶段;当岩石宏观破坏时,岩石的孔隙率、渗透速度、渗流速度、微孔隙直径、渗透率等达到最大值。同时还发现:在渗透水压力作用下,受压砂岩的微裂纹起裂应力占岩石峰值强度的45%,而同样干岩样中微裂纹起裂应力占岩石峰值强度的55%以上,也就是说,渗透水压力使砂岩样的强度损失10%。  相似文献   

8.
通过对含预制椭圆形孔洞板状大理岩试样进行单轴压缩试验,研究椭圆长短轴比m及倾角?对大理岩力学特性的影响,并借助数字图像相关技术(DIC)记录并分析试样的变形破裂过程。研究发现,含椭圆形孔洞试样的峰值强度、弹性模量和起裂应力水平都随倾角的增大而增大,且对倾角和长短轴比的变化都有不同的敏感性,其中峰值强度对倾角变化的敏感程度随长短轴比的增大而增大。含椭圆形孔洞试样的最终破坏模式随倾角的增大可分为拉–剪混合破坏和剪切破坏2种,而孔洞长短轴比的变化对裂纹搭接及岩样破坏形态的影响较小。含椭圆形孔洞岩样在峰值前后的变形破裂特征能够通过观测试样表面应变场得到清晰地表征,其中局部高应变区预示着裂纹的起裂和扩展。基于局部化特征,提出一种含孔洞缺陷岩石起裂应力的测量方法,当含椭圆形孔洞试样起裂应力水平达到39.83%~76.18%时,试样处于拉伸裂纹临界起裂状态。  相似文献   

9.
高应力、高水压卸荷条件下岩石的非连续性微缺陷演化过程研究对揭示隧道围岩裂纹的起裂孕育、碎胀裂化和峰值破坏,分析围岩稳定性具有重要意义。利用MTS815型程控伺服刚性试验机开展了砂岩在固定围压、不同水压条件下的水力三轴卸荷试验。试验结果表明:岩石变形在卸荷前以压缩为主,变化微小;卸荷后不久开始快速扩容,直至损伤破裂。水力条件下应力–应变曲线上的各个特征应力值比无水压条件下的饱和试样有不同程度地提高,增加了应变能储备,从初始扩容到峰值强度的历时更短,曲线斜率更陡。随着水压的不断增大,各个特征应力值有所减小,表现在起裂条件降低,压缩极限减小,扩容时间提前,表明了砂岩在高水压条件下的脆性特性进一步增强,抵抗变形破坏的能力逐渐降低。通过扩容特征值与扩容点后的体应变关系,求得初始扩容点后的相对扩容应变与变形模量差,建立了多项式回归关系。研究结论揭示了水力作用下砂岩扩容变形行为的强烈性和突发性,可为水–力双场条件下的围岩变形预测及控制提供参考。  相似文献   

10.
岩石各阶段强度特征值的准确确定对合理界定岩石变形破坏阶段、力学机制、设计参数取值具有重要的理论和实践意义。鉴于此,提出"试验数据+轴向应变刚度"联合确定岩石变形破坏各阶段强度特征值的方法,并结合围压30 MPa砂岩全过程三轴压缩试验数据,详细介绍采用该方法的取值过程,同时对该取值方法进行验证。结果表明:(1)在岩石应力–应变曲线中线弹性特征明显,但线弹性阶段和裂纹稳定扩展阶段的分界点不易被界定;(2)轴向应变刚度能将应力–应变曲线中微小的变化有效显现出来,更利于准确界定岩石变形破坏各个阶段,且可划分为上下不均匀波动、上下均匀波动基本水平、不均匀波动逐步减小至零、极度波动和基本维持为零五个阶段;(3)裂纹的压缩、起裂、扩展、贯通将引起轴向应变刚度出现较大的、不规律的波动;(4)采用该方法确定的压密应力cc?、起裂应力ci?、损伤应力cd?与峰值应力f?的比值分别为:0.10,0.56,0.68;(5)该取值方法理论基础为一阶导数,取值过程客观合理,为理论上定量、操作上半定量的取值方法。结合现代计算机和数据处理技术,能快速实现该方法操作过程,认为该方法可为岩石强度特征值的确定提供新的思路。  相似文献   

11.
钢纤维混凝土三轴压缩下的强度和韧度特性   总被引:1,自引:1,他引:0  
当围压分别为10,20,40,80MPa时,对纤维体积分数φf为0%,0.75%,1.50%,3.00%的钢纤维混凝土进行了3×10-5,5×10-4 s-1两种应变率的常规三轴压缩试验,测出了全过程应力-应变曲线,并据此分析了纤维体积分数、围压和应变率对试验曲线的峰值应力、峰值应变及材料韧度等力学指标的影响规律.结果表明:当围压相同而φf不同时,随着φf的提高,材料的峰值应力和峰值应变均明显提高,其韧度也有所提高;当围压不同而φf相同时,随着围压的增加,材料的强度和韧度都有所提高.而且,在较低围压下往素混凝土里添加钢纤维更能够发挥其增强和增韧效果;随着加载应变率的增加,材料的峰值应力、峰值应变也有一定的增大趋势.  相似文献   

12.
单轴压缩下红砂岩能量演化试验研究   总被引:5,自引:2,他引:3  
 岩石在变形至破坏过程中,伴随着能量的耗散和释放。为寻找加载过程中能量的演化规律,对红砂岩试件进行4种加载速率下单轴不断增加荷载循环加、卸载试验,得到弹性能和耗散能随应力的演化及分配规律。研究结果表明:(1) 破坏之前,试件吸收总能量、积聚弹性能、耗散能皆随应力的增大而增大,吸收总能量增加最快,弹性能次之,耗散能最慢。(2) 弹性能随轴向应力呈现非线性增长,在24%极限强度前增长速率较小,随后慢慢增大,临近破坏时又增长放缓;耗散能起初增长较缓慢,在即将破坏阶段显著大幅增加,增幅可达85%左右。(3) 整个加载过程弹性能所占比例约从60%增长到82%,增长速率逐渐变慢,而临近破坏时有小幅下降;耗散能所占比例的变化规律相反。(4) 在准静态加载范围内,大体上加载速率越小,耗散能越大;而加载速率对弹性能演化基本无影响。(5) 试件的弹性能密度–应力曲线无离散性,能够反映材料本身的固有性质。  相似文献   

13.
 为研究饱水对岩溶灰岩力学性质和能量机制的影响,利用RMT–150B岩石力学试验系统分别对自然和饱水状态试样进行单轴压缩和常规三轴压缩试验。试验结果表明:饱水对岩溶灰岩的强度和变形特征影响显著,2种状态下试样峰值强度与围压的回归关系可用以主应力表达的Coulomb强度准则表征;岩溶灰岩试样的似软化系数及其降低速率均随围压增加而减小。从能量角度对2种状态试样损伤破坏过程中的能量特征进行试验研究,结果表明:饱水状态试样吸收的总应变能U,峰前储存的可释放应变能 及二者随轴向应变的增加速率均小于自然状态的对应值;随含水量增加 逐渐下降,峰后 释放率随围压增加而逐步下降,整体上饱水试样的 释放率较大;峰值应力处试样各应变能随围压线性递增,2种状态下耗散能差值随围压的变化是试样破坏形式差异的内在原因;岩溶灰岩试样全过程能量实时演化过程具有阶段性,2种状态下压密和弹性变形阶段耗散能差别细微,但进入屈服阶段后,饱水状态试样耗散能增加更快。  相似文献   

14.
基于高应力条件下大理岩峰前卸围压试验和能量原理,研究岩样吸收应变能、塑性变形及裂纹扩展耗散应变能、环向变形消耗应变能和弹性应变能储存及释放的能量转化全过程特征,揭示其损伤破裂演化的应变能转化机制。峰前储存的弹性应变能较耗散应变能多,耗散应变能仅在临近峰值强度点附近才明显增加。峰后应力快速跌落伴随着弹性应变能的迅速释放和快速的塑性变形及裂隙扩展所耗散应变能。峰前、峰后应变能转化速率均随卸荷速率的增大而明显增大,特别是峰后转化速率增大得更为剧烈。而初始围压对应变能转化速率的影响与卸荷速率密切相关,快速卸荷时应变能转化速率随初始围压的升高而明显增大,而较慢速卸荷时随围压变化相对不明显,但初始围压增大明显加强峰前弹性应变能储存。峰后弹性应变能释放速率远大于环向变形消耗应变能速率,而吸收的应变能约与耗散应变能基本相等,故高应力强卸荷条件下硬性岩石常表现为近垂直于卸荷方向的张性破裂或劈裂特征,甚至出现岩爆现象。高应力强卸荷条件下大理岩具有峰前快速储存较多弹性应变能和相对较少的损伤耗能,而峰后弹性应变能快速大量释放和耗散,并伴有相对较快速地向卸荷方向的张裂变形消耗应变能的释放与耗散机制。  相似文献   

15.
为了探明真三轴循环加卸载过程中含裂缝砂岩能量演化规律,设计了真三轴循环加卸载试验,深入分析了循环加卸载过程中吸收总能量、弹性能、耗散能的演化规律与变化特征,进而探讨了能量耗散与岩石强度之间的关系。结果表明:(1)吸收总能量、弹性能和耗散能变化规律与砂岩试样裂缝角度无关,均随循环次数的增加而增加,且增幅越来越大,临近破坏时最大;(2)不同裂缝角度砂岩的吸收总能量、弹性能和耗散能与应力上限呈二次函数关系增长,吸收总能量、弹性能和耗散能能量增速依次减小,但前两者增速显著大于耗散能增速,且耗散能拟合曲线呈“凹”形;(3)定义了表征岩石储能能力和能量耗散能力的储能系数和能量耗散系数,对比发现岩石裂缝角度越大,储能能力越强,能量耗散能力越弱,岩石的峰值强度越大。  相似文献   

16.
基于?100 mm SHPB试验平台,对吸水红砂岩试样进行不同应变率下冲击压缩试验,对比干燥试样试验结果,探究了水-岩耦合作用下动态抗压强度、变形及单元可释放弹性应变能We的应变率相关性,得出:在水-岩-动力的耦合中,岩石强度的应变率强化作用和水的劣化作用同时存在,但应变率强化作用占主导地位;裂隙水对岩石强度的应变率效应有强化作用,并且这种强化作用随着应变率的增大而增强;岩石的峰值应变在水的耦合作用下应变率效应更为显著;当应变率超过某一阈值时,吸水试样在弹性变形阶段更加容易变形,弹性模量降低,而在冲击作用下,裂隙水阻碍裂纹发展,试样抵抗变形的能力增强,变形模量线性增加;水-岩耦合作用下We对应变率更为敏感,与干燥试样的WDe相比,WWe随着应变率的增加而增长更为迅速。  相似文献   

17.
 根据大理岩加荷破坏与卸荷破坏试验结果,研究大理岩不同应力路径下的破坏特征和能量演化规律。结果表明,常规三轴破坏岩样吸收总能量 高于单轴压缩吸收总能量,峰值强度后常规三轴弹性应变能释放比单轴缓慢,储能极限高于单轴压缩的储能极限。随着卸荷初始围压升高,岩样峰值强度和峰值应变增大,破坏形式由张拉–剪切破坏向剪切破坏过渡,岩样在峰值强度处吸收的总能量 和弹性能 增大,耗散能 却没有明显变化,围压对峰值强度处的 和 无明显影响。卸荷速度增大,岩样峰值强度和峰值应变减小,破坏形式由剪切破坏向张拉–剪切破坏过渡,岩样在峰值点处吸收的总能量 和弹性能 减小,耗散能 却没有明显变化,卸荷速度对 和 无明显影响。加荷与卸荷2种应力路径下,岩样在到达峰值强度时所吸收的总能量和储能极限都与峰值强度呈线性关系。  相似文献   

18.
扩容现象是岩石变形破坏过程中的重要特征。基于MTS815 Flex Test GT岩石力学试验平台,采用室内三轴卸荷试验和塑性力学理论分析,揭示了大理岩在卸荷条件下的扩容特征及能量变化特征。结果表明,随着围压的增大,岩样的各特征应力随之增大,其扩容特征随之减弱;岩样的扩容参数——扩容指标以及剪胀角均具有围压效应,即扩容指标与围压呈良好的指数型分布,剪胀角与应力比呈线性分布;岩样的卸荷破坏过程中能量特征为初始时以可释放应变能为主到破坏时的耗散能为主,其间的转折点为初始损伤扩容点,同时卸荷条件下的特征能量值与围压具有良好的指数类型关系;在峰值点与残余点处,岩样的能量损伤值与剪胀角以及能量特征值与扩容指标均存在着较好的指数类型关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号