首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Iron oxide (Fe2O3) nanoparticles are widely used in different fields of nanotechnology. However, studies on its toxicological effects in humans and the environment are scarce. Therefore in this investigation 28 days repeated dose oral toxicity studies were conducted on Fe2O3-30 nanoparticles and its counterpart Fe2O3-Bulk with special reference to target biochemical enzymes and histopathological changes in different tissues of female albino Wistar rats. The alterations observed after Fe2O3-30 treatment in various tissues of exposed rats were dose dependent. Low dose was less effective than medium and high doses with low dose demonstrating "no observed adverse effect" (NOAEL). Further, high dose treated rats showed toxic sign and symptoms but no mortality. Due to the repeated doses of Fe2O3-30 nanoparticles, significant inhibition was observed in total, Na(+)-K+, Mg2+ and Ca(2+)-ATPases in brain of exposed rats. Similarly, significant inhibition was recorded in RBC and brain acetylcholinesterase indicating that both synaptic transmission and nerve conduction were affected by this compound. Fe2O3-30 significantly increased aspartate amino transferase, alanine amino transferase and lactate dehydrogenase in serum and liver, whereas, these enzymes were significantly decreased in kidney indicating tissue necrosis and possible leakage of these enzymes into the blood stream. Increased levels of these enzymes in liver as well as in serum might be an adaptive mechanism due to the stress of iron nanoparticles. High dose treated rats of Fe2O3-30 showed dilated central vein, perivascular round cell collections in liver along with focal areas of necrosis, whereas kidney showed focal tubular damage and red pulp congestion, whereas prominent white pulp indices were observed in spleen. However, histopathological analysis of heart and brain tissues failed to show any adverse changes in their architecture exposed to repeated doses of Fe2O3-30 when compared with controls. Fe2O3-Bulk did not induce any adverse effects in either biochemical parameters or histopathology in the treated rats and the changes observed were near to controls and mostly insignificant, indicating that the counter part of nanoparticles i.e., bulk material is less potent than the nanoparticles in causing toxicity in the exposed animals. These results suggested that as particle size decreases, this iron nanoparticle showed increased toxicity, even though the same material is relatively inert in bulk form. The changes observed in these target enzyme activities could be useful as biomarkers of exposure to nanoparticles.  相似文献   

2.
Formation of composites of dextran-coated Fe(3)O(4) nanoparticles (NPs) and graphene oxide (Fe(3)O(4)-GO) and their application as T(2)-weighted contrast agent for efficient cellular magnetic resonance imaging (MRI) are reported. Aminodextran (AMD) was first synthesized by coupling reaction of carboxymethyldextran with butanediamine, which was then chemically conjugated to meso-2,3-dimercaptosuccinnic acid-modified Fe(3)O(4) NPs. Next, the AMD-coated Fe(3)O(4) NPs were anchored onto GO sheets via formation of amide bond in the presence of 1-ethyl-3-(3-dimethyaminopropyl) carbodiimide (EDC). It is found that the Fe(3)O(4)-GO composites possess good physiological stability and low cytotoxicity. Prussian Blue staining analysis indicates that the Fe(3)O(4)-GO nanocomposites can be internalized efficiently by HeLa cells, depending on the concentration of the composites incubated with the cells. Furthermore, compared with the isolated Fe(3)O(4) NPs, the Fe(3)O(4)-GO composites show significantly enhanced cellular MRI, being capable of detecting cells at the iron concentration of 5 μg mL(-1) with cell density of 2 × 10(5) cells mL(-1), and at the iron concentration of 20 μg mL(-1) with cell density of 1000 cells mL(-1).  相似文献   

3.
The affinity of Cd(2+) toward carboxyl-terminated species covalently bound to monodisperse superparamagnetic iron oxide nanoparticles, Fe(3)O(4)(np)-COOH, was investigated in situ in aqueous electrolytes using rotating disk electrode techniques. Strong evidence that the presence of dispersed Fe(3)O(4)(np)-COOH does not affect the diffusion limiting currents was obtained using negatively and positively charged redox active species in buffered aqueous media (pH = 7) devoid of Cd(2+). This finding made it possible to determine the concentration of unbound Cd(2+) in solutions containing dispersed Fe(3)O(4)(np)-COOH, 8 and 17 nm in diameter, directly from the Levich equation. The results obtained yielded Cd(2+) adsorption efficiencies of ~20 μg of Cd/mg of Fe(3)O(4)(np)-COOH, which are among the highest reported in the literature employing ex situ methods. Desorption of Cd(2+) from Fe(3)O(4)(np)-COOH, as monitored by the same forced convection method, could be accomplished by lowering the pH, a process found to be highly reversible.  相似文献   

4.
Fe(3)O(4) nanoparticles embedded in the shells of encapsulated microbubbles could be used therapeutically as in situ drug-delivery vehicles. Bioeffects on liver tumor cells SMMC-7721 due to the excitation of Fe(3)O(4) nanoparticles attached to microbubbles generated by ultrasound (US) are studied in an in vitro setting. The corresponding release phenomenon of Fe(3)O(4) nanoparticles from the shells of the microbubbles into the cells via sonoporation and related phenomena, including nanoparticle delivery efficiency, cell trafficking, cell apoptosis, cell cycle, and disturbed flow of intracellular calcium ions during this process, are also studied. Experimental observations show that Fe(3)O(4) nanoparticles embedded in the shells of microbubbles can be delivered into the tumor cells; the delivery rate can be controlled by adjusting the acoustic intensity. The living status or behavior of Fe(3)O(4) -tagged tumor cells can then be noninvasively tracked by magnetic resonance imaging (MRI). It is further demonstrated that the concentration of intracellular Ca(2+) in situ increases as a result of sonoporation. The elevated Ca(2+) is found to respond to the disrupted site in the cell membrane generated by sonoporation for the purpose of cell self-resealing. However, the excessive Ca(2+) accumulation on the membrane results in disruption of cellular Ca(2+) cycling that may be one of the reasons for the death of the cells at the G1 phase. The results also show that the Fe(3)O(4) -nanoparticle-embedded microbubbles have a lower effect on cell bioeffects compared with the non-Fe(3)O(4) -nanoparticle-embedded microbubbles under the same US intensity, which is beneficial for the delivery of nanoparticles and simultaneously maintains the cellular viability.  相似文献   

5.
The possibility that diabetes aggravates nanoparticles induced blood-brain barrier (BBB) breakdown, edema formation and brain pathology was examined in a rat model. Engineered nanoparticles from metals Ag and Cu (50-60 mn) were administered (50 mg/kg, i.p.) once daily for 7 days in normal and streptozotocine induced diabetic rats. On the 8th day, BBB permeability to Evans blue and radioactive iodine (131I-sodium) was examined in 16 brain regions. In these brain regions alterations in regional CBF was also evaluated using radiolabelled (125I) carbonized microspheres (o.d. 15 +/- 6 microm). Regional brain edema and Na+, K+ and Cl- ion analysis were done in 8 selected brain regions. Histopathology was used to detect neuronal damage employing Nissl staining. Nanoparticles treatment in diabetic rats showed much more profound disruption of the BBB to Evans blue albumin (EBA) and radioiodine in almost all the 16 regions examined as compared to the normal animals. In these diabetic animals reduction in regional cerebral blood flow (CBF) was more pronounced than in normal rats. Edema development as seen using water content and increase in Na+ and a decrease in K+ ion were most marked in diabetic rats as compared to normal rats after nanoparticles treatment. Cell changes in the regions of BBB disruptions were also exacerbated in diabetic rats compared to normal group after nanoparticles treatment. Taken together, these observations are the first to show that diabetic rats are more susceptible to nanoparticles induced cerebrovascular reactions in the brain and neuronal damage. The possible mechanisms and significance of the present findings are discussed.  相似文献   

6.
Jin YH  Seo SD  Shim HW  Park KS  Kim DW 《Nanotechnology》2012,23(12):125402
Monodispersed core/shell spinel ferrite/carbon nanoparticles are formed by thermolysis of metal (Fe3+, Co2+) oleates followed by carbon coating. The phase and morphology of nanoparticles are characterized by x-ray diffraction and transmission electron microscopy. Pure Fe3O4 and CoFe2O4 nanoparticles are initially prepared through thermal decomposition of metal–oleate precursors at 310 degrees C and they are found to exhibit poor electrochemical performance because of the easy aggregation of nanoparticles and the resulting increase in the interparticle contact resistance. In contrast, uniform carbon coating of Fe3O4 and CoFe2O4 nanoparticles by low-temperature (180 degrees C) decomposition of malic acid allowed each nanoparticle to be electrically wired to a current collector through a conducting percolative path. Core/shell Fe3O4/C and CoFe2O4/C nanocomposite electrodes show a high specific capacity that can exceed 700 mAh g(-1) after 200 cycles, along with enhanced cycling stability.  相似文献   

7.
A new hydride generator has been characterized for use with the acid-NaBH(4) hydride generation systems based on the insertion of a capillary tube into the sample introduction channel of a standard Meinhard nebulizer. The acidic sample and the tetrahydroborate solution are mixed at a merge point 1.5 cm from the end of the nebulizer orifice. Nebulization of the reaction solutions into a 0.7 mL tubular "spray chamber" follows a very short mixing time (less than 0.012 s) of the reagents. This approach permits 10?000 μg/mL Ni(2+) or Cr(3+) to be present in the sample solution without producing any interferences. Additionally, in the presence of Fe(3+) added as a "releasing agent", 5000 μg/mL Co(2+) or 160 μg/mL Cu(2+) can also be tolerated without interference. An 80 ± 2% generation efficiency is attained for the test element selenium. A detection limit of 6 μg/L (3σ(b)) is achieved with ICP-AES detection. Precision of replicate measurements at the 12 μg/L level varies from 5 to 12% relative standard deviation.  相似文献   

8.
A novel nano-adsorbent, carboxymethyl-β-cyclodextrin modified Fe(3)O(4) nanoparticles (CMCD-MNPs) is fabricated for removal of copper ions from aqueous solution by grafting CM-β-CD onto the magnetite surface via carbodiimide method. The characteristics results of FTIR, TEM, TGA and XPS show that CM-β-CD is grafted onto Fe(3)O(4) nanoparticles. The grafted CM-β-CD on the Fe(3)O(4) nanoparticles contributes to an enhancement of the adsorption capacity because of the strong abilities of the multiple hydroxyl and carboxyl groups in CM-β-CD to adsorb metal ions. The adsorption of Cu(2+) onto CMCD-MNPs is found to be dependent on pH and temperature. Adsorption equilibrium is achieved in 30 min and the adsorption kinetics of Cu(2+) is found to follow a pseudo-second-order kinetic model. Equilibrium data for Cu(2+) adsorption are fitted well by Langmuir isotherm model. The maximum adsorption capacity for Cu(2+) ions is estimated to be 47.2mg/g at 25 °C. Furthermore, thermodynamic parameters reveal the feasibility, spontaneity and exothermic nature of the adsorption process. FTIR and XPS reveal that Cu(2+) adsorption onto CMCD-MNPs mainly involves the oxygen atoms in CM-β-CD to form surface-complexes. In addition, the copper ions can be desorbed from CMCD-MNPs by citric acid solution with 96.2% desorption efficiency and the CMCD-MNPs exhibit good recyclability.  相似文献   

9.
Cell labeling and tracking are becoming increasingly important in the fields of stem cell transplantation. To track the migration and distribution of the implanted cells is critical for understanding the beneficial effects of stem cell therapy. The aim of this study is to synthesize new superparamagnetic nanoparticles and investigate the feasibility of magnetic labeling of bone marrow mesenchymal stem cells (MSCs). Monodisperse hydrophobic magnetite (Fe3O4) nanoparticles were prepared through high temperature decomposition of Fe(acac)3 and a long-chain alcohol. The nanoparticles were further modified with a bipolar surfactant, 2,3-dimercaptosuccinic acid (DMSA) and then transformed into water-soluble iron oxide nanoparticles (WION). The magnetic particles showed uniform size (10 nm), high efficiency and stability in MSCs labeling. The labeled cells were cultured until passage 8, there is no reduction in magnetic tropism and the percentage of labeled cells. The results of MTT proliferation assay and flow cytometry analysis show that the WION are biocompatible. The labeling process does not cause cell death and apoptosis, and has no side effect on growth capacity of the cells. In conclusion, the successful and stable labeling of MSCs and the efficient magnetic tropism indicate that this WION can be used for tracking of MSCs in future MSCs-based stem cell therapy.  相似文献   

10.
In this paper, we report single step synthesis of hydrophilic superparamagnetic magnetite nanoparticles by thermolysis of Fe(acac)3 and their characterization of the properties relevant to biomedical applications like hyperthermia and magnetic resonance imaging (MRI). Size and morphology of the particles were determined by Transmission electron microscopy (TEM) while phase purity and structure of the particles were identified by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Magnetic properties were evaluated using vibrating sample magnetometer (VSM) and superconducting quantum interference device (SQUID) measurements. The as prepared nanoparticles were found to be superparamagnetic with the blocking temperature of 136 K and were easily suspendable in water. Cytotoxicity studies on human cervical (SiHa), mouse melanoma (B16F10) and mouse primary fibroblast cells demonstrated that up to a dose of 0.1 mg/ml, the magnetite nanoparticles were nontoxic to the cells. To evaluate the feasibility of their uses in hyperthermia and MRI applications, specific absorption rate (SAR) and spin-spin relaxation time (T2) were measured respectively. SAR has been calculated to be above 80 Watt/g for samples with the iron concentration of 5-20 mg/ml at 10 kA/m AC magnetic field and 425 kHz frequency. r2 relaxivity value was measured as 358.4 mM(-1)S(-1) which is almost double as compared to that of the Resovist, a commercially available MRI contrast agent. Thus the as-prepared magnetite nanoparticles may be used for hyperthermia and MRI applications due to their promising SAR and r2 values.  相似文献   

11.
First-principles calculations are used to investigate the structural and electronic properties of Fe-doped ZnO nanoparticles. Based on extensive validation studies surveying various density functionals, the hybrid functional PBE0 is employed to calculate the structures, formation energies, and electronic properties of Fe in ZnO with Fe concentrations of 6.25, 12.5, and 18.75 at%. Substitution of Zn by Fe, zinc vacancies, and interstitial oxygen defects is studied. High-resolution inner-shell electron energy loss spectroscopy measurements and X-ray absorption near-edge structure calculations of Fe and O atoms are performed. The results show that Fe-doped ZnO nanoparticles are structurally and energetically more stable than the isolated FeO (rocksalt) and ZnO (wurtzite) phases. The Fe dopants distribute homogeneously in ZnO nanoparticles and do not significantly alter the host ZnO lattice parameters. Simulations of the absorption spectra demonstrate that Fe(2+) dominates in the Fe-doped ZnO nanoparticles reported recently, whereas Fe(3+) is present only as a trace.  相似文献   

12.
4-{(4-Methylphenyl)glycyl}-3,4-dihydroquinoxalin-2(1H)-one (QIN) was prepared from 4-(2-chloroacetyl)- 3,4-dihydroquinoxalin-1(1H)-one). 125I-QIN was prepared by electrophilic substitution using Chloramine- T as an oxidizing agent. The highest labeling yield, 94%, was obtained under the following conditions: pH 7, 15 min, 100 μg of QIN, 50 μg of Chloramine-T, and carrier-free Na125I. The labeled compound was stable for up to 12 h post labeling. A biodistribution study of 125I-QIN in mice showed that its brain uptake was about 5.1% at 30 min post injection and remained on this level up to 1 h. As compared to commercially used radiopharmaceuticals for brain imaging, 125I-QIN is more stable and shows higher brain uptake.  相似文献   

13.
In this study, the size-uniform (5-6 nm), nearly spherical, and well-dispersed aqueous Fe3o4 magnetic nanoparticles were prepared by an improved chemical coprecipitation method. The DDAT-terminated (S-1-Dodecyl-S'-(alpha,alpha'-dimethyl-alpha"-acetic acid) trithiocarbonate) polymethacrylic (PMA-DDAT) was chosen as the apt surfactant, and the terminal DDAT can be used as a high efficient RAFT chain-transfer agent for further functionalization. Then, the functionalized Fe3O4 reacted with 4-amino-2,2,6,6-tetramethyl-piperidine-oxyl (4-NH2-TEMPO) to give the spin labeling magnetic nanoparticles. Finally, the multifunctional MNPs was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR), Fourier transform infrared spectrometer (FT-IR), and vibrating-sample magnetometer (VSM). The obtained highly water-soluble, superparamagnetic, and multifunctional magnetic nanoparticles should find potential applications in biomedical research.  相似文献   

14.
Zhu  Wenhao  Wu  Zhenxu  Wang  Peng  Liu  Tianyi  Guo  Min  Ji  Jiansong  He  Mingfeng  Wang  Haifeng  Zhang  Peibiao 《Journal of Materials Science》2022,57(28):13632-13646

Within brain tissue engineering, stem cell implantation assisted by biodegradable injectable scaffolds is a crucial method. However, implanted scaffolds, especially microcarriers, may translocate due to the fluidity of the materials. Therefore, the development of an MRI contrast enhancement microcarrier, which could noninvasively trace the location of the implant in vivo, is necessary to guide the evaluation of treatment prognosis. In this study, GdPO4·H2O nanoparticles were utilized as the dispersed phase to endow PLGA microcarriers with T1-weighted MRI contrast ability. By adjusting the dispersed phase of Gd compound nanoparticle in PLGA Matrix, a cross-comparison experiment between MRI contrast enhancement imaging and biocompatibility was conducted, and 0.8% Gd was found to be the most suitable rate for preparing nano-composites. Moreover, 0.8% Gd/PLGA microcarriers were suspension-cultured with stem cells in vitro and implanted into traumatic brain injury rats in vivo. Excellent cytocompatibility and enhancement of the T1 phase of MRI were confirmed. This work created a T1-weighted MRI contrast-enhanced microcarrier, which provides a clinical noninvasive tracing cell scaffold for brain tissue engineering.

  相似文献   

15.
Magnetic fluid hyperthermia (MFH) employs heat dissipation from magnetic nanoparticles to elicit a therapeutic outcome in tumor sites, which results in either cell death (>42?°C) or damage (<42 °C) depending on the localized rise in temperature. We investigated the therapeutic effect of MFH in immortalized T lymphocyte (Jurkat) cells using monodisperse magnetite (Fe(3)O(4)) nanoparticles (MNPs) synthesized in organic solvents and subsequently transferred to aqueous phase using a biocompatible amphiphilic polymer. Monodisperse MNPs, ~16 nm diameter, show maximum heating efficiency, or specific loss power (watts/g Fe(3)O(4)) in a 373 kHz alternating magnetic field. Our in vitro results, for 15 min of heating, show that only 40% of cells survive for a relatively low dose (490 μg Fe/ml) of these size-optimized MNPs, compared to 80% and 90% survival fraction for 12 and 13 nm MNPs at 600 μg Fe/ml. The significant decrease in cell viability due to MNP-induced hyperthermia from only size-optimized nanoparticles demonstrates the central idea of tailoring size for a specific frequency in order to intrinsically improve the therapeutic potency of MFH by optimizing both dose and time of application.  相似文献   

16.
环氧氯丙烷交联法制备交联葡聚糖与多肽偶联的肿瘤新生血管靶向的纳米Fe3O4造影剂,考察其体内肿瘤靶向性并进行磁共振成像试验。以共沉淀法制备6~8nm的Fe3O4粒子,采用油酸钠和葡聚糖二次包覆,用环氧氯丙烷使葡聚糖交联并与靶向多肽偶联,进行了肿瘤细胞结合实验和荷瘤动物磁共振成像实验。结果表明,包覆后纳米Fe3O4复合粒子为20~30nm,水动力学粒径小于80nm,仍表现为超顺磁性;葡聚糖交联的时间4~8h,造影剂在体内血浆半衰期从2.8h延长到6.2h;主要通过肝脏和肾脏代谢。与无靶的比较,靶向多肽偶联后与肿瘤细胞特异性结合能力提高了10~30倍,MR成像信号密度是无靶的3.68倍。  相似文献   

17.
The removal of Ni(II) from aqueous solution by magnetic nanoparticles prepared and impregnated onto tea waste (Fe(3)O(4)-TW) from agriculture biomass was investigated. Magnetic nanoparticles (Fe(3)O(4)) were prepared by chemical precipitation of a Fe(2+) and Fe(3+) salts from aqueous solution by ammonia solution. These magnetic nanoparticles of the adsorbent Fe(3)O(4) were characterized by surface area (BET), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). The effects of various parameters, such as contact time, pH, concentration, adsorbent dosage and temperature were studied. The kinetics followed is first order in nature, and the value of rate constant was found to be 1.90×10(-2) min(-1) at 100 mg L(-1) and 303 K. Removal efficiency decreases from 99 to 87% by increasing the concentration of Ni(II) in solution from 50 to 100 mg L(-1). It was found that the adsorption of Ni(II) increases by increasing temperature from 303 to 323 K and the process is endothermic in nature. The adsorption isotherm data were fitted to Langmuir and Freundlich equation, and the Langmuir adsorption capacity, Q°, was found to be (38.3)mgg(-1). The results also revealed that nanoparticle impregnated onto tea waste from agriculture biomass, can be an attractive option for metal removal from industrial effluent.  相似文献   

18.
In this paper, Eu(n+), Sm3+ doped Fe3O4 nanoparticles were prepared via solvothermal method, in which Ferric chloride is used as the iron source, and anhydrous EuCl3, SmCl3 as doping source. Eu, Sm valence in doped Fe3O4 nanoparticles, and effects of Eu, Sm doping amount on their structure, morphology, magnetic properties and PL properties were discussed. The results show, the Eu ions had doped Fe3O4 nanoparticles in the mixed-valence state, when the Eu and Sm doping amount were increased, the doped Fe3O4 nanoparticles changed from hollow nanospheres into spherical particles, and finally changed into uniform cube-shaped particles with 13 nm in diameter. Moreover, the doping sites for doping ions in doped Fe3O4 nanoparticles were discussed from Rietveld analysis of XRD pattern of the doped Fe3O4 nanoparticles. And the changes of the magnetic and PL properties with the doping amount were further discussed. It was found that higher Sm(3+)-doping amount led to stronger magnetic dipole transitions, while the Eu(n+)-doping amount had little effect on the magnetic dipole transitions, thus resulting in different changes in their saturation magnetization with doping amount.  相似文献   

19.
Sandhu A  Handa H  Abe M 《Nanotechnology》2010,21(44):442001
Functionalized magnetic nanoparticles are important components in biorecognition and medical diagnostics. Here, we present a review of our contribution to this interdisciplinary research field. We start by describing a simple one-step process for the synthesis of highly uniform ferrite nanoparticles (d = 20-200 nm) and their functionalization with amino acids via carboxyl groups. For real-world applications, we used admicellar polymerization to produce 200 nm diameter 'FG beads', consisting of several 40 nm diameter ferrite nanoparticles encapsulated in a co-polymer of styrene and glycidyl methacrylate for high throughput molecular screening. The highly dispersive FG beads were functionalized with an ethylene glycol diglycidyl ether spacer and used for affinity purification of methotrexate-an anti-cancer agent. We synthesized sub-100 nm diameter magnetic nanocapsules by exploiting the self-assembly of viral capsid protein pentamers, where single 8, 20, and 27 nm nanoparticles were encapsulated with VP1 pentamers for applications including MRI contrast agents. The FG beads are now commercially available for use in fully automated bio-screening systems. We also incorporated europium complexes inside a polymer matrix to produce 140 nm diameter fluorescent-ferrite beads (FF beads), which emit at 618 nm. These FF beads were used for immunofluorescent staining for diagnosis of cancer metastases to lymph nodes during cancer resection surgery by labeling tumor cell epidermal growth factor receptor (EGFRs), and for the detection of brain natriuretic peptide (BNP)-a hormone secreted in excess amounts by the heart when stressed-to a level of 2.0 pg ml(-1). We also describe our work on Hall biosensors made using InSb and GaAs/InGaAs/AlGaAs 2DEG heterostructures integrated with gold current strips to reduce measurement times. Our approach for the detection of sub-200 nm magnetic bead is also described: we exploit the magnetically induced capture of micrometer sized 'probe beads' by nanometer sized 'target beads', enabling the detection of small concentrations of beads as small as 8 nm in 'pumpless' microcapillary systems. Finally, we describe a 'label-less homogeneous' procedure referred to as 'magneto-optical transmission (MT) sensing', where the optical transmission of a solution containing rotating linear chains of magnetic nanobeads was used to detect biomolecules with pM-level sensitivity with a dynamic range of more than four orders of magnitude. Our research on the synthesis and applications of nanoparticles is particularly suitable for point of care diagnostics.  相似文献   

20.
Fluidized zero valent iron (ZVI) process was conducted to reduce hexavalent chromium (chromate, CrO(4)(2-)) to trivalent chromium (Cr(3+)) from electroplating wastewater due to the following reasons: (1) Extremely low pH (1-2) for the electroplating wastewater favoring the ZVI reaction. (2) The ferric ion, produced from the reaction of Cr(VI) and ZVI, can act as a coagulant to assist the precipitation of Cr(OH)(3(s)) to save the coagulant cost. (3) Higher ZVI utilization for fluidized process due to abrasive motion of the ZVI. For influent chromate concentration of 418 mg/L as Cr(6+), pH 2 and ZVI dosage of 3g (41 g/L), chromate removal was only 29% with hydraulic detention time (HRT) of 1.2 min, but was increased to 99.9% by either increasing HRT to 5.6 min or adjusting pH to 1.5. For iron species at pH 2 and HRT of 1.2 min, Fe(3+) was more thermodynamically stable since oxidizing agent chromate was present. However, if pH was adjusted to 1.5 or 1, where chromate was completely removed, high Fe(2+) but very low Fe(3+) was present. It can be explained that ZVI reacted with chromate to produce Fe(2+) first and the presence of chromate would keep converting Fe(2+) to Fe(3+). Therefore, Fe(2+) is an indicator for complete reduction from Cr(VI) to Cr(III). X-ray diffraction (XRD) was conducted to exam the remained species at pH 2. ZVI, iron oxide and iron sulfide were observed, indicating the formation of iron oxide or iron sulfide could stop the chromate reduction reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号