首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixed-valence manganites with the ABO3 perovskite structure display a variety of magnetic and structural transitions, dramatic changes of electrical conductivity and magnetoresistance effects. The physical properties vary with the relative concentration of Mn3+ and Mn4+ in the octahedral corner-sharing network, and the proportion of these two cations is usually changed by doping the trivalent large A cation (for example, La3+) with divalent cations. As the dopant and the original cation have, in general, different sizes, and as they are distributed randomly in the structure, such systems are characterized by local distortions that make it difficult to obtain direct information about their crystallographic and physical properties. On the other hand, the double oxides of formula AA'3Mn4O12 contain a perovskite-like network of oxygen octahedra centred on the Mn cations, coupled with an ordered arrangement of the A and A' cations, whose valences control the proportion of Mn3+ and Mn4+ in the structure. The compound investigated in this work, (NaMn3+(3))(Mn3+(2)Mn4+(2))O12, contains an equal number of Mn3+ and Mn4+ in the octahedral sites. We show that the absence of disorder enables the unambiguous determination of symmetry, the direct observation of full, or nearly full, charge ordering of Mn3+ and Mn4+ in distinct crystallographic sites, and a nearly perfect orbital ordering of the Mn3+ octahedra.  相似文献   

2.
We report a new method of growing Mn-doped CdS (CdS:Mn) nanoparticles in an aqueous solution at boiling temperature. The idea is to use precursors that react only at high temperature, in order to gain crystalline luminescent nanoparticles. CdSO(4), Mn(NO(3))(2) and Na(2)S(2)O(3) were used as the precursors, and thioglycerol was employed as the capping agent and also the reaction catalyst. Na(2)S(2)O(3) is thermally sensitive and it releases S(2-) ions upon heating. The CdS:Mn nanoparticles obtained are about 4?nm in size and show both cubic and hexagonal crystalline phases with a ratio of 35% to 65%. The luminescence of nanoparticles contains a peak at 580?nm, which is related to Mn(2+) ions. Prolonged reaction time results in a decrease of the Mn luminescence peak to about 35% of the maximum value. We discuss the possible causes of the Mn peak reduction and attribute it to preferential dissolution of Mn ions into the solution due to shape reconfiguration of the nanoparticles.  相似文献   

3.
Ho YM  Yang GM  Zheng WT  Wang X  Tian HW  Xu Q  Li HB  Liu JW  Qi JL  Jiang Q 《Nanotechnology》2008,19(6):065710
Hybrid ZnO-carbon nanotubes as well as nanodiamond-carbon nanotubes were synthesized via a straightforward process of plasma enhanced chemical vapor deposition. For the former, ZnO nanoparticles were instantly coated on the tube surface in the final growing process of carbon nanotubes, while for the latter diamond nanoparticles were grown using pretreatment of a silicon substrate with Ni(NO(3))(2)·6H(2)O/Mg(NO(3))(2)·6H(2)O alcohol solution prior to deposition and a high H(2)/CH(4) gas flow ratio in the deposition process. The morphology and microstructure of the obtained hybrid materials were characterized by transmission electron microscopy. Both hybrid ZnO-carbon nanotubes and nanodiamond-carbon nanotubes exhibited excellent field emission properties.  相似文献   

4.
Su X  Zhao J  Zhao X  Guo Y  Zhu Y  Wang Z 《Nanotechnology》2008,19(36):365610
We report here a simple approach to the synthesis of Cu(2)O/SiO(2) core-shell nanocomposites in water solution. The Cu(2)O cores have a perfect octahedral structure with uniform size of about 200-300?nm. A compact SiO(2) shell 9?nm in thickness is located at the surfaces of Cu(2)O octahedra, and it is composed of fine SiO(2) nanoparticles. During the depositing of the SiO(2) particles, as we presumed, dynamic absorbing and disengaging of Na(+) at the interface of Cu(2)O octahedra and the solution made it possible for the formation of Cu-O-Si bonds between core and shell in the composites. The existence of Cu-O-Si bonds in our core-shell composite can be substantiated by peak changes at?1236 and 1080?cm(-1) in the FT-IR spectra. This is the reason why the SiO(2) shell is so compact and uniform. Moreover, these Cu(2)O/SiO(2) core-shell octahedra were further used as precursors, depending on a simple disproportionation reaction of Cu(2)O in acid, to easily achieve Cu/SiO(2) movable multicore-shell octahedral nanocomposites. In the final Cu/SiO(2) core-shell composite, the thin SiO(2) octahedral shell was held, inside of which formed several free Cu nanoparticles 50-80?nm in size. Studies on the Cu(2)O/SiO(2) core-shell octahedral composites and Cu/SiO(2) movable multicore-shell octahedral nanocomposites would be a good thing not only for fundamental research but also for applications.  相似文献   

5.
Peng X  Ichinose I 《Nanotechnology》2011,22(1):015701
Ultrathin MnOOH nanofibers were synthesized on a large scale from diluted Mn(NO(3))(2) aqueous solution at room temperature. These MnOOH nanofibers were shape-reservedly converted into Mn(3)O(4) and MnO(2) nanofibers by post-heat treatment in air at 400?°C and 600?°C for 1 h, respectively. The morphology and crystalline structures of the nanofibers were characterized by electronic microscopes and x-ray diffraction. These nanofibers had good crystalline structures. These nanofibers were in bundles with a diameter of 25 nm composed of 3-5 nm fine crystalline nanofibers. The Mn(3)O(4) nanofibers had a specific surface area of 71 m(2) g(-1) and demonstrated highly catalytic degradation of the organic pollutant methylene blue with the assistance of H(2)O(2) at room temperature.  相似文献   

6.
Four complexes are prepared and characterized having molecular formula [Zn(dab)(2)](NO(3))(2), [Cu(dab)(2)](NO(3))(2).H(2)O, [Ni(dab)(2)](NO(3))(2).2H(2)O and [Mn(dab)(2)](NO(3))(2), where dab: 1,4-diaminobutane. Thermolyses of these complexes were investigated by simultaneous thermogravimetry (TG), derivatives thermogravimetry (DTG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). The kinetics of the thermolysis at early stages is investigated using isothermal TG by applying model-fitting and isoconversional method. Thermolytic process is slow in inert (N(2)) and is fast in air atmosphere due to oxidative nature. To investigate the response of these complexes under the condition of rapid heating, ignition delay (D(i)) has been measured. Thermal stability of the complexes was found to increase in the order Mn < Cu < Ni < Zn.  相似文献   

7.
Wang H  Baek S  Song J  Lee J  Lim S 《Nanotechnology》2008,19(7):075607
Highly oriented Ga-doped zinc oxide (ZnO) nanorod arrays have been prepared on a ZnO-buffered silicon substrate in an aqueous solution, which is a mixture of methenamine (C(6)H(12)N(4)), zinc nitrate hexahydrate (Zn(NO(3))(2)·6H(2)O), and gallium nitrate hydrate (Ga(NO(3))(3)·xH(2)O). The microstructure characteristics and optical properties of the nanorod arrays were analyzed using different characterization techniques including field-emission scanning electron microscopy (FESEM), x-ray photoelectron spectroscopy (XPS), and photoluminescence (PL). The experimental results show that the morphology, density, and surface compositions of ZnO nanorod arrays are sensitive to the concentration of gallium nitrate hydrate. The PL spectra of all ZnO nanorod arrays show three different emissions, including UV (ultraviolet), yellow, and NIR (near infrared) emissions. With the increase in the Ga doping level, the luminescence quality of ZnO nanorods has been improved. The peak of UV emission has a small redshift, which can be ascribed to the combined effect of size and Ga doping. Furthermore, Ga doping has caused defects that respond to NIR emission.  相似文献   

8.
采用浸渍法,以Al2O3为载体,制备了氧化镍和氧化锰复合的双组分负载型金属催化臭氧化催化剂.以松花江江水中UV254的去除率作为催化剂活性指标,通过正交试验,寻找催化剂的最佳制备工艺.实验结果表明:催化剂的最佳制备工艺为浸渍3h,活性组元体积比1:1,90℃干燥2h,400℃焙烧4h.通过扫描电镜对催化剂结构进行了表征;通过TG-DTA测试,分析了催化剂的热分解过程中反应速率、热效应和物质变化过程;运用XPS分析了催化剂表面元素的组成情况,催化剂的主要活性成分为MnO2.  相似文献   

9.
Liu H  Wu J  Min JH  Hou P  Song AY  Kim YK 《Nanotechnology》2011,22(5):055701
The Fe(3)O(4)-Ca(3)(PO(4))(2) core-shell nanoparticles were prepared by one-pot non-aqueous nanoemulsion with the assistance of a biocompatible triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO), integrating the magnetic properties of Fe(3)O(4) and the bioactive functions of Ca(3)(PO(4))(2) into single entities. The Fe(3)O(4) nanoparticles were pre-formed first by thermal reduction of Fe(acac)(3) and then the Ca(3)(PO(4))(2) layer was coated by simultaneous deposition of Ca(2+) and PO(4)(3-). The characterization shows that the combination of the two materials into a core-shell nanostructure retains the magnetic properties and the Ca(3)(PO(4))(2) shell forms an hcp phase (a = 7.490 ?, c = 9.534 ?) on the Fe(3)O(4) surface. The magnetic hysteresis curves of the nanoparticles were further elucidated by the Langevin equation, giving an estimation of the effective magnetic dimension of the nanoparticles and reflecting the enhanced susceptibility response as a result of the surface covering. Fourier transform infrared (FTIR) analysis provides the characteristic vibrations of Ca(3)(PO(4))(2) and the presence of the polymer surfactant on the nanoparticle surface. Moreover, the nanoparticles could be directly transferred to water and the aqueous dispersion-collection process of the nanoparticles was demonstrated for application readiness of such core-shell nanostructures in an aqueous medium. Thus, the construction of Fe(3)O(4) and Ca(3)(PO(4))(2) in the core-shell nanostructure has conspicuously led to enhanced performance and multi-functionalities, offering various possible applications of the nanoparticles.  相似文献   

10.
Guo Z  Liu W  Su BL 《Nanotechnology》2008,19(44):445608
By employing a simple bottom-up method for the first time and using ideas learned from nature, especially from the lotus leaf, we fabricated unique Co(3)O(4) hierarchical boat-like hollow cages about 30?μm in length and 8?μm in width at the middle constituted of many nanorods and nanoparticles. The various morphologies of the products can be tailored from nanoparticles to nanorods and to microcages by tuning the concentration of Co(NO(3))(2)·6H(2)O. We believe that ammonia employed in this method plays not only the role of ligand to ensure the oxidation of Co(2+) to Co(3+) but also helps with the variation of concentration for the final morphologies. The products, which might be used as catalysts and microreactors, show superhydrophobic properties after chemical modification with poly(dimethylsiloxane) vinyl-terminated (PDMSVT) compound. It is confirmed that the synergic effect of the surface morphology and the surface free energy contribute to this unique surface water repellence.  相似文献   

11.
By annealing of precursors, SnO2 nanorods or nanowires have been synthesized by the oriented aggregation of initial SnO2 nanoparticles. Chlorine salts are very important for both preventing increase in size of the precursors and providing aqueous and kinetic circumstances that cause the oriented aggregation of the initial nanoparticles. The possible growth mechanism of SnO2 nanorods is also discussed.  相似文献   

12.
Bai S  Zhao J  Du G  Zheng J  Zhu Z 《Nanotechnology》2008,19(20):205605
A novel in situ method based on a liquid membrane templated self-assembly process is employed to modify carbon tube-in-tube nanostructures (TTCNTs) with Fe(2)O(3) nanoparticles. The as-obtained Fe(2)O(3) modified TTCNTs (Fe(2)O(3)/TTCNTs) nanocomposites are well constructed and the Fe(2)O(3) nanoparticles are well dispersed and decorated on the outer, inner and intramolecular surfaces of TTCNTs. In addition, the Fe(2)O(3)/TTCNTs nanocomposites are employed as catalysts for selective catalytic reduction (SCR) of NO with NH(3) and show high SCR catalytic activity, indicating that the novel multiple intramolecular channels and unique surface chemistry of the TTCNTs should play an important role in improving the properties of?TTCNTs.  相似文献   

13.
Spinel Co3O4 octahedra synthesized by a facile redox-precipitation method were investigated for the complete oxidation of methane. XRD analysis showed that the spinel structural Co3O4 octahedra had a relatively strong (1 1 1) diffraction peak as compared with that of the irregular shaped Co3O4 nanoparticles prepared by a conventional precipitation method. The results of methane combustion test demonstrated that the Co3O4 octahedra had no catalytic activity at 300-500 °C, while the Co3O4 irregular nanoparticles were highly active at the same reaction conditions. HRTEM studies revealed that the Co3O4 octahedra were predominantly exposed by the low Miller-index {1 1 1} facets with the lowest surface energy, and the Co3O4 irregular nanoparticles were exposed by various crystal facets. The results exhibited that the {1 1 1} facets with the low surface energy of the Co3O4 octahedra resulted in the inert catalytic activity in the methane oxidation reaction.  相似文献   

14.
The B2O3-doped MgTiO3 powders and ceramics have been prepared by sol-gel method using Mg(NO3)2·6H2O, Ti(C4H9O)4 and H3BO3 as the starting materials. The sintering behavior and microwave dielectric properties of ceramics prepared from powders with different particle sizes were investigated. The gels were calcined at 650, 700, 750, 800, 850 and 900 C and the derived particle sizes of powders were 20-30 nm, 30-40 nm, 40-60 nm, 60-90 nm, 90-120 nm and 120-150 nm, respectively. The nanoparticles with the size of 30-60 nm benefited the sintering process with high surface energy whereas nanoparticles with the size of 20-30 nm damaged the microwave dielectric properties due to the pores in the ceramics. The addition of B2O3 used as a liquid sintering aid reduced the sintering temperature of MgTiO3 ceramic, which was supposed to enter the MgTiO3 lattice and resulted in the formation of (MgTi)2(BO3)O phase. The B2O3-doped MgTiO3 ceramic sintered at 1100 C and prepared from the nanoparticles of 40-60 nm had compact structure and exhibited good microwave dielectric properties: εr=17.63, Q × f=33,768 GHz and τ f= 48×10 6 C 1.  相似文献   

15.
以氧氯化锆和硝酸锰为主要原料,采用Sol—Gel—VFD技术制备了MnOx/ZrO2超细粉体材料。用XRD,TG—DSC,TEM和BET等技术对试样进行了表征,用微反应器-气相色谱仪在线研究了试样不同配合比例对试样催化还原NO的活性的影响。结果表明:用Sol—Gel—VFD技术可制得粒子尺寸约为20nm、具有高催化活性的负载型MnOx/ZrO2纳米催化剂,锰由低价向高价转变。添加了Ce组分能提高MnOx/ZrO2纳米催化剂催化还原NO的活性。  相似文献   

16.
Tang B  Wang G  Zhuo L  Ge J 《Nanotechnology》2006,17(4):947-951
Single-crystalline dandelion-like β-MnO(2) three-dimensional microstructures have been successfully prepared for the first time via a simple hydrothermal process based on the direct reaction between Mn(NO(3))(2) and H(2)O(2). H(2)O(2) plays an important role in the formation of the dandelion-like morphology. The formation mechanism of the dandelion-like nanostructures was investigated and discussed based on the experimental results. Magnetic measurements show that the Néel temperature of the as-obtained product is 100?K, which is about 6?K higher than that of the corresponding bulk β-MnO(2) crystals.  相似文献   

17.
汪滨  李从举 《材料导报》2011,25(24):107-110,114
以硝酸钡、硝酸铁和柠檬酸为原料,采用溶胶-凝胶法制备了单相钡铁氧体(BaFe12O19)纳米粉体,并进一步研究了n(Fe)/n(Ba)、热处理温度对产物组成、形貌以及磁性能的影响。用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和振动样品磁强计(VSM)分别对样品的组成、形貌和磁性能进行了表征。实验结果表明,当煅烧温度不变时,样品的晶粒尺寸随着n(Fe)/n(Ba)的增大而变大,磁性能随n(Fe)/n(Ba)的增大而增强;当n(Fe)/n(Ba)不变时,样品的晶粒尺寸随着煅烧温度的升高而变大。当n(Fe)/n(Ba)=12时,在800℃煅烧2h得到单一晶型的钡铁氧体粉体。1000℃时样品的磁性能最佳,饱和磁化强度(Ms)为70.88A.m2/kg,矫顽力(Hc)为372.89kA/m。  相似文献   

18.
In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.  相似文献   

19.
We report on the structural and magnetic properties of nanoparticles of NiGa2O4 and 5 at.% M doped (M = Mn2+, Cu2+, Co2+, Fe3+ and Tb3+) at Ga site of NiGa2O4, synthesized by gel-combustion method. The particle size, as investigated by X-ray diffraction and transmission electron microscopy, could be fine tuned by a controlled annealing process. Weak ferromagnetism becomes significant, when the particles are in the nano regime (5-7 nm). The magnetization becomes insignificant at larger particle size ( 150 nm). Cu2+ and Tb3+ doped NiGa2O4 nanoparticles showed relatively large room temperature ferromagnetism compared to other doped (Fe, Mn and Co) and undoped NiGa2O4 samples. The weak ferromagnetism observed in the nanoparticles of NiGa2O4, which is antiferromagnetic in the bulk, is due to the surface disordered states with uncompensated spins.  相似文献   

20.
An G  Yu P  Xiao M  Liu Z  Miao Z  Ding K  Mao L 《Nanotechnology》2008,19(27):275709
A low-temperature, efficient and one-step deposition method, in which Mn(CH(3)COO)(2)·4H(2)O serves as precursor and O(2) as oxidant, was employed to deposit Mn(3)O(4) nanoparticles on multi-walled carbon nanotubes (MWCNTs) in ethanol solution at 150 and 200?°C. The resulting Mn(3)O(4)/MWCNT composites were characterized by means of different techniques including x-ray diffraction, x-ray photoelectron spectroscopy and transmission electron microscopy. It was indicated that the Mn(3)O(4) nanoparticles were attached uniformly on MWCNTs with sizes less than 10?nm, and the loading amount of Mn(3)O(4) could be tuned by changing the initial weight ratio of Mn(CH(3)COO)(2)·4H(2)O/MWCNT. The electrochemical behavior of the Mn(3)O(4)/MWCNT composites was examined by cyclic voltammetry, and the result indicated the specific capacitance of the composite electrode was 330?F?g(-1), nearly 18 times higher than that of the pure MWCNT electrode. The good performance of the as-prepared composites as electrode material may be attributed to the synergistic effects of the Mn(3)O(4) nanoparticles and the MWCNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号