首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
结合小波变换和神经网络技术,本文首先利用小波包对故障信号进行分解,然后将归一化后的数据用于RBF神经网络进行汽轮机转子故障分类.MATLAB实验仿真表明小波分析和RBF神经网络的结合在汽轮机转子常见故障的诊断中是很有效的.  相似文献   

2.
基于小波神经网络的开关电源的故障诊断   总被引:1,自引:1,他引:1  
以非线性小波Morlet基作为激励函数,形成神经元,结合小波变换与神经网络各自的优点,建立集小波分析与神经网络于一体的紧致型小波神经网络;采用能量分布特征提取方法和改进的BP算法,设计了一种基于小波神经网络的故障诊断系统,并应用于开关电源故障诊断中;对实例电路仿真结果表明,该方法能正确识别各种故障状态,准确率高,系统诊断结果与实际相符,验证了该小波神经网络故障诊断系统的有效性。  相似文献   

3.
基于小波-神经网络的电机振动故障诊断   总被引:14,自引:1,他引:14  
吴桂峰  翟玉庆  陈虹  曹卫 《控制工程》2004,11(2):152-155
针对电机振动信号的频谱特点,提出基于小波-神经网络技术的电机故障模式识别与诊断的新方法。利用小波包的多维多分辨率特性,对电机振动信号进行分解与重构,获得振动信号的突变信息,提取与电机故障相关的特征信息,将其作为特征向量输入ART2神经网络,对其进行训练。经过训练后的神经网络可对电机工作状态进行在线监测和实时故障诊断,并在转子实验台上进行了模拟故障仿真试验。通过对仿真结果的分析,证实这种诊断方法的可行性。  相似文献   

4.
基于小波-模糊神经网络的齿轮箱故障诊断   总被引:1,自引:0,他引:1  
李华 《传感技术学报》2006,19(3):672-674,745
根据齿轮箱传动部件故障机理,利用小波变换多分辨率特性和时频局部化特性,提取出故障特征信号;并利用有效的消噪技术,去除噪声干扰.参考专家经验,给出模糊规则及模糊神经网络模型,实现故障推理.并将小波变换和模糊神经网络应用在上海宝钢热轧机的齿轮故障诊断中.  相似文献   

5.
为了准确可靠地发现和预测陀螺仪的故障,提出了一种基于RBF小波神经网络的陀螺仪故障检测方法;该方法是将陀螺仪的输出信号进行三层小波包分解,再对分解得到的8个不同频段上的节点进行特征提取,将提取后的8维特征向量作为RBF神经网络的输入;当陀螺仪发生故障时,陀螺仪的输出信号中会产生突变成分,进行训练后的RBF神经网络可以准确地诊断出陀螺仪的故障类型;应用Matlab实现了RBF小波神经网络诊断陀螺仪故障类型的仿真;仿真结果表明,应用RBF小波神经网络进行陀螺仪故障诊断有很好的效果。  相似文献   

6.
为了对往复泵的故障进行正确诊断,提出了基于改进型小波神经网络的往复泵故障诊断方法。以往复泵单个泵缸内的压力信号作为系统特征信号通过小波包分解来提取故障特征向量,同时将此特征向量作为改进型神经网络的输入,利用改进型神经网络对故障做进一步的精确实时诊断。文中对小波神经网络采用的优化算法是:动量因子和学习率自适应调整相结合的梯度下降法,该方法可以提高学习速度并增加算法的可靠性。通过对往复泵液力端多故障诊断实例的检验表明,该系统故障诊断正确率达到了93%以上。  相似文献   

7.
基于小波神经网络的齿轮箱故障诊断研究   总被引:4,自引:0,他引:4       下载免费PDF全文
论述了小波神经网络的系统结构及算法,并根据齿轮振动信号的频域变化特征,提取特征向量作为输入,利用小波神经网络建立特征向量与故障模式之间的映射关系,建立了基于该算法的齿轮故障诊断模型。仿真结果表明:与传统的BP神经网络相比,该模型显著缩短了训练时间。该小波神经网络进行机械故障诊断是有效的。  相似文献   

8.
提出了基于小波多分辨分析和小波包预处理的模拟电路故障诊断方法。该方法用小波作为信号预处理工具,经小波多分辨分析得到N层分解后的低频和高频信号,再利用小波包分析对多分辨分析没有细分的高频信号进一步分解,以达到提高频率分解率的目的。经PCA分析和归一化后的能量作为训练样本送入BP神经网络进行训练。仿真实验表明此方法能够快速有效的对模拟电路的故障进行诊断和定位。  相似文献   

9.
李春明  王勇 《微计算机信息》2007,23(1S):204-205
模拟电路故障诊断具有诊断特性复杂,故障字典建立耗时长等特性,用传统的方法很难得到最佳的诊断效果。本文采用小波神经网络对故障电路建模,基于该网络学习收敛快,对网络输入不太敏感的特点,实现故障诊断。  相似文献   

10.
详细阐述了小波神经网络(WNN)的原理、结构,并对传统的BP算法进行了改进。以空调系统传感器故障检测问题为目标,提出了基于WNN的故障诊断方法。通过采集天津博物馆中的传感器数据,对训练好的WNN进行了传感器故障诊断能力的验证,对温度传感器的1℃偏差故障、0.05℃/s速率漂移故障、完全故障、与不同方差下的精度等级下降故障进行了仿真,结果表明:这种方法对传感器故障具有很好的诊断效果。  相似文献   

11.
基于神经网络的大规模模拟电路故障检测系统   总被引:4,自引:2,他引:4  
吴欣  张博  陈涛 《计算机测量与控制》2004,12(11):1049-1051
设计了一个基于小波和神经网络的信号处理系统,该系统主要针对大规模模拟电路故障检测。针对传统诊断技术的局限性,讨论了利用神经网络方法分级诊断大规模模拟电路软故障的方案,通过小波变换提取故障特征,并利用神经网络的非线性映射特性逼近故障诊断模型。诊断结果表明基于人工神经网络的电路故障诊断方法是行之有效的。此方法具有广阔的应用前景,为大规模模拟电路故障诊断提供了新的理论依据和检测方法,并有希望研制成一套高效的检测设备。  相似文献   

12.
基于自联想小波网络的汽轮发电机组故障诊断   总被引:1,自引:0,他引:1       下载免费PDF全文
周建萍  郑应平 《计算机工程》2008,34(12):224-226
针对电厂汽轮发电机组故障诊断问题,将小波变换和自联想神经网络结合构造了一个多层的自联想小波网络故障诊断系统。在输入层对振动信号进行二进离散小波变换,提取其在多尺度下的细节系数作为故障特征向量,根据这些特征向量进行自联想网络的学习,用学习过的自联想网络诊断故障。将该方法成功地应用于汽轮发电机组故障诊断,实验仿真结果表明,该方法优于常规的BP网络方法:某些单一故障的识别率提高了31.2%,综合故障的识别率提高了26.6%。  相似文献   

13.
金瑜  陈光福  刘红 《测控技术》2007,26(7):64-66,69
针对现有BP网络在模拟电路故障诊断中存在的问题,提出了一种基于BP小波神经网络的故障诊断方法.该法将小波函数与BP网络结合构成BP小波网络,这种网络具有小波变换的时频局域化性质和BP网络的自学习能力.分别用BP小波网络和传统BP网络对实例电路进行故障诊断,结果表明本方法是有效的,而且比传统BP网络方法的学习收敛速度快得多.  相似文献   

14.
本文提出了一种基于遗传算法小波神经网络的变压器故障诊断方法。首先构造了基于Mexicohat小波的小波神经网络,其次利用遗传算法优化小波网络的参数,并将其应用到基于溶解气体分析的变压器故障诊断中,最后通过实例证明了本方法的有效性和可行性。  相似文献   

15.
Fault Diagnosis Using Wavelet Neural Networks   总被引:4,自引:0,他引:4  
Qipeng  Liu  Xiaoling  Yu  Quanke  Feng 《Neural Processing Letters》2003,18(2):115-123
Wavelet neural networks are a class of neural networks consisting of wavelets. This paper presents a novel universal tool for fault diagnosis and algorithms for wavelet neural network construction are proposed. Using the model of wavelet neural networks, we can not only extract the features of system but also predict the development of the fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号