首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
Oxyfluoride borosilicate glass with the molar composition of 60SiO2-15B2O3-15Na2O-8CaF2-2NaF-0.25Eu2O3 was synthesized by a traditional glass melting method. Glass ceramics containing CaF2 nanocrystals were prepared by heat treating the glass samples at a tem-perature in the range of 620-680 °C. The results of X-ray diffraction (XRD) indicated that the average crystallite size and the lattice constant of CaF2 nanocrystals increased with the heat treatment temperature increasing. The luminescence spectra showed that the emission intensity of Eu3+ doped glass ceramics was stronger than that of the glass matrix, and increased with the heat treatment temperature increasing. The left edge of excitation band shifted to shorter wavelength in the glass ceramics. The local environments of Eu3+ ions in the glass and glass ceram-ics were different.  相似文献   

2.
Spectroscopic properties of Er3+/Yb3+-doped transparent oxyfluoride borosilicate glass ceramics containing YOF nanocrystals were systematically investigated. X-ray diffraction (XRD) confirmed the formation of YOF nanocrystals in the glassy matrix. Based on the Judd-Ofelt theory, the intensity parameters Ωi (i=2, 4, 6), spontaneous emission probability, radiative lifetime, radiative quantum efficiency and the effective emission bandwidth were investigated. The upconversion luminescence intensity of Er3+ ions in the glass ceramics increased significantly with the increasing crystallization temperature. The transition mechanisms of the green and red upconversion luminescence were ascribed to a two-photon process, and the blue upconversion luminescence was a three-photon absorption process.  相似文献   

3.
Luminescence of Er^3+ in Oxyfluoride Transparent Glass-Ceramics   总被引:1,自引:0,他引:1  
Erbium doped silicate, germanate, and tellurium-germanate oxyfluoride glasses were prepared in a bulk form. Through appropriate heat treatment of the as-prepared glasses, transparent glass-ceramics (TGCs) were obtained with the formation of β-PbF2∶Er3 nanocrystals in the glass matrix were confirmed by X-ray diffraction. Well-defined diffraction peaks were observed in the samples after heat-treatment. The average crystal diameter of these precipitated crystals from full-width at half-maximum (FWHM) of the diffraction peak was estimated to be between 8 and 13 nm. Optical absorption, photoluminescence, and upconversion luminescence were measured on as-prepared glass and glass-ceramics. Luminescence spectra in the TGC samples revealed well-resolved, sharp stark-splitting peaks, which indicates that a majority of Er3 ions has been incorporated into the crystalline phase of the nanocrystals. The intensity of the visible and near infrared luminescence mostly increases in TSG compared to that in the as-prepared glass. In 1.53 μm absorption and emission bands, the maximum absorption peak is blue-shifted from 1531 to 1507 nm, whereas the maximum emission peak is red-shifted from 1535 to 1543 nm in TGC, as compared with that in glass. The bandwidth at half-maximum (BWHM) of the emission band is significantly broader in TGC than in glass, which is beneficial to the erbium-doped fiber amplifier (EDFA). Upconversion luminescence was measured using 800 nm near-infrared light excitation. Drastically increased upconversion luminescence was observed from the TGC as compared to that from their corresponding as-prepared glasses. In addition to a strong green emission centered at 545 nm because of 4S3/2→4I15/2 transition and a weaker red emission centered at 662 nm because of 4F9/2→4I15/2 transition, generally seen from the Er3 doped glasses, two violet emissions centered at 410 nm because of 2H9/2→4I15/2 transition and centered at 379 nm because of 4G11/2→4I15/2 transition were also observed from the TGC. The increased luminescence was attributed to the decreased effective phonon energy and the increased energy transfer between the excited ions when Er3 ions were incorporated into the precipitated β-PbF2 nanocrystals. The results indicated two attractive spectroscopic properties of the Er3 doped TGC samples, compared to glass samples, namely a reduced multiphonon decay rate and a reduced inhomogeneous broadening. In addition, these oxyfluoride TGC materials were robust, easy and flexibile to process, and possible to be fabricated in the fiber form for device applications.  相似文献   

4.
The transparent oxyfluoride glass ceramics containing Ba Gd F5 nanocrystals were prepared with a composition of 42 Si O2-12Na2O-16Al2O3-24 Ba F2-4Gd2O3-2Ce F3(mol.%) by thermal treatment technology. The typical DSC curve, X-ray diffraction(XRD) and transmission electron microscopy(TEM) patterns were measured. The transmission spectra and luminescent properties were investigated. The decay times of the Gd3+ ions at 312 nm excited with 275 nm for the Ce3+ ions doped glass and glass ceramics specimens and the energy transfer process between Gd3+ ions and Ce3+ ions were also studied. The XRD analysis and the TEM images confirmed the generation of the spherical Ba Gd F5 nanocrystals. Compared with the PG specimen, the intensity of the luminescence spectra of the glass ceramics specimens was apparently enhanced with the heat treatment temperature increasing, and a blue shift in the excitation spectra and the emission spectra of glass ceramics specimens was obviously observed. In the fluorescence decay curves of the Gd3+ ions, it could be obviously observed that the fluorescent intensity decays in the Ce3+ ions doped glass and glass ceramics specimens decreased rapidly with the increase of the heat treatment temperature. In addition, the energy transfer efficiency from Gd3+ions to Ce3+ ions was also calculated.  相似文献   

5.
Ce~(3+)/Tb~(3+) co-doped transparent glass ceramics containing YPO_4 nanocrystals were prepared using high temperature melting method,and their structural and luminous properties were investigated.XRD analysis and TEM images confirmed the existence of YPO_4 nanocrystals in glass ceramics.The transmission spectra proved that the glass ceramics specimens still maintained a high transparency.Then the excitation and emission spectra of the Ce~(3+) and Tb~(3+) single-doped and co-doped glass and glass ceramics were discussed,which proved that the glass ceramics had better luminescent properties.Under the near ultraviolet(331 nm)excitation,the broadband emission located at 385 nm was observed which was ascribed to 5d→~2F_(5/2) and ~2F_(7/2) transition of Ce~(3+) ions.Several characteristic sharp peaks centered at 489,543,578 and 620 nm originated from the ~5D_4 to ~7F_J(J=6,5,4,3)of Tb~(3+) ions.The decay time of Tb~(3+) ions at 543 nm and the relevant energy levels of Ce~(3+) ions and Tb~(3+) ions illustrated the transfer process from Ce~(3+) ions to Tb~(3+) ions.The best CIE chromaticity coordinate of the glass ceramics specimen was calculated as(x=0.3201,y=0.3749),which was close to the NTSC standard values for white(x=0.333,y=0.333).All the results suggested that the YPO~4-based Ce~(3+)/Tb~(3+) co-doped glass ceramics could act as potential luminescent materials for white light-emitting diodes.  相似文献   

6.
Rare earth ions doped oxyfluoride glass with composition of 28SiO2·22AlO1.5·40PbF2·10PbO·(4.8-x) GdFy0.1NdF3.xYbF3·0.1TmF3 (x=-0, 0.1, 0.2, 0.5, 1, 2, 3, 4 and 4.8) in molar ratio was developed. When the oxyfluoride glasses were heat-treated at the first crystallization temperature, the glasses gave transparent glass-ceramics in which rare earth containing fluorite-type nanocrystals of about 17.2 nm in diameter uniformly precipitated in the glass matrix. Compared with the glasses before heat treatment, the glass-ceramics exhibited very strong blue up-conversion luminescence under 800 nm light excitation. Rare earth containing nanocrystals were also space selectively precipitated upon laser irradiation in an oxyfluoride glass, the size of precipitated nanocrystals could be controlled by laser power and scan speed. The intensity of the blue up-conversion luminescence was strongly dependent on the precipitation of β-PbF2 nanocrystal and the YbF3 concentration. The reasons for the highly efficient Tm^3+ up-conversion luminescence after laser irradiation were discussed.  相似文献   

7.
Er3+/Yb3+-codoped transparent oxyfluoride borosilicate glass ceramics containing Ba2GdF7 nanocrystals were prepared and spectroscopic properties of rare earth ions were investigated.Fluoride nanocrystals Ba2GdF7 were successfully precipitated in glass matrix,which was confirmed by X-ray diffraction(XRD)and transmission electron microscopy(TEM)results.In comparison with the as-made precursor,significant enhancement ofupconversion luminescence was observed in the Er3+/Yb3+codoped oxyfluoride glass ceramics,which may be due to the variation of coordination environment around Er3+and Yb3+ions after crystallization.The transition mechanisms of the green and red upconversion luminescence were ascribed to a two-photon process,and that of the blue upconversion luminescence was a three-photon process.  相似文献   

8.
By heat treating the alkaline earth fluorosilicate glass, transparent glass ceramics containing alkaline earth fluoride nanocrystallites were prepared. The luminescence spectra and phonon sideband associated with the Eu^3+:^5D2→^7F0 in glass and glass ceramics were investigated to analyze the local environment around Eu^3+. Judd-Ofelt parameters were also calculated from emission spectra, which indicated that the Eu^3+ ions entered the precipitated CaF2, SrF2, and BaF2 nanocrystallites. Heat treating could not pledge Eu^3+ ions to coordinate with F^- in the precipitated MgF2 nanocrystallites, owing to the smaller radius of Mg^2+ than that of Eu^3+.  相似文献   

9.
The (60 - x)Bi2O3 - xGeO2-30B2O3-10ZnO (x = 5, 10, 20, 30 molar percent) glasses doped with Er^3+ and Er^3+/Yb^3+ were fabricated using the melting method. The thermal stability of the glasses was studied with their DTA curves. The results show that the difference between the glass transition temperature and the crystallization onset temperature increases with the increase of GeO2 content, indicating that the thermal stability of the glass has become better. The absorption spectra were recorded and the stimulated emission cross sections were calculated using the McCumber theory. The Ω2, O4, and Ω6 parameters,the transition probability, the radiative lifetime, and the fluorescence branch ratio of Er^3+ for optical transition were calculated from their absorption spectra in terms of reduced matrix U^(t)(λ = 2, 4, 6) character for optical transitions. The infrared emission of Er^3+ was measured upon excitation with 970 nm light and the full width at half-maximum (FWHM) was estimated from the emission spectra. The pumping efficiency and the intensity of the emission at the 1.54 μm band of Er^3+ were enhanced considerably by co-doping Yb^3+ .  相似文献   

10.
Rare earth ions doped oxyfluoride glass with composition of 28SiO2·22AlO1.5·40PbF2·10PbO·(4.8–x) GdF3·0.1NdF3·xYbF3·0.1TmF3 (x=0, 0.1, 0.2, 0.5, 1, 2, 3, 4 and 4.8) in molar ratio was developed. When the oxyfluoride glasses were heat-treated at the first crystallization temperature, the glasses gave transparent glass-ceramics in which rare earth containing fluorite-type nanocrystals of about 17.2 nm in diame-ter uniformly precipitated in the glass matrix. Compared with the glasses before heat treatment, the glass-ceramics exhibited very strong blue up-conversion luminescence under 800 nm light excitation. Rare earth containing nanocrystals were also space selectively precipitated upon laser irradiation in an oxyfluoride glass, the size of precipitated nanocrystals could be controlled by laser power and scan speed. The intensity of the blue up-conversion luminescence was strongly dependent on the precipitation of β-PbF2 nanocrystal and the YbF3 concentration. The reasons for the highly efficient Tm3 up-conversion luminescence after laser irradiation were discussed.  相似文献   

11.
The effect of alumina content and heat treatment temperature and time, on microstructure and Er3+ (0.5 mol.%) emission of oxy-fluoride glass-ceramics were investigated in this research. Two values of 1.8 (SA1.8Er0.5) and 2.18 (SA2.18Er0.5) were selected in this re-search for SiO2/Al2O3 ratio. According to DTA results, precursor glasses were heat treated at 630, 660 and 690 °C for 4 h and some glasses were also heat treated at 630 °C for 48 and 72 h. The results indicated that alumina content had significant effect on phase separation and vis-cosity of the glasses. Therefore the size, size distribution, and volume concentration of nano CaF2 crystals which precipitated during the heat treatment depended on alumina content of the glass. Due to the much smaller size of the precipitated CaF2 crystals in the glasses of low alumina content, these samples maintained excellent transparency and had narrower crystal size distribution than the high alumina glasses. The crystal size was increased markedly with the temperature increasing from 630 to 690 °C. On the other hand a slight increase was observed in the crystal size by raising the heat treatment time in both glasses. Results indicated that in low alumina content glass (SA2.18Er0.5) the size of CaF2 nanocrystals was controlled in one order of magnitude. The increase of heat treatment time and temperature led to the incorporation of Er3+ ions into CaF2 crystalline phase, increasing significantly the upconversion intensity. After heat treatment at 690 ℃ for 4 h, atomic force microscope (AFM) re-vealed the development of small crystals with an average size of 80 and 30 nm in SA1.8Er0.5 and SA2.18Er0.5 samples, respectively.  相似文献   

12.
The upconversion(UC) of the rare earth doped glass-ceramics has been extensively investigated due to their potential applications in many fields, such as color display, high density memories, optical data storage, sensor and energy solar cell, etc. Many series of them, especially the oxyfluorides glasses containing Ba2 LaF 7 nanocrystals were studied in this review work, due to the thermal and mechanical toughness, high optical transmittance from the ultraviolet to the infrared regions, and a low nonlinear refractive index compared to the other commercial laser glasses. Moreover, the energy transfer(ET) between the rare earth ions and transition metals plays an important role in the upconversion process. The cooperative ET has been researched very activly in UC glasses due to applications in the fields of solar cells, such as in the Er/Yb, Tm/Yb, Tb/Yb, Tb/Er/Yb and Tm/Er/Yb couples. The present article reviews on the recent progress made on:(i) upconversion materials with fluoride microcrystals in glasses and the mechanisms involved, including the UC in double and tri-dopant RE ions activated fluoride microcrystal, energy transfer process; and(ii) the effect of the metal Mn and nanoparticles of Au, Ag, Cu on the enhancement of UC emissions. Discussions have also been made on materials, material synthesis, the structural and emission properties of glass-ceramics. Additionally, the conversion efficiency is still a challenge for the spectra conversion materials and application; challenge and future advances have also been demonstrated.  相似文献   

13.
LaF3:Yb^3+ , Er^+ microcrystals were synthesized by a hydrothermal method, and then, the LaF3: Yb^3+ , Er^+ microcrystals were coated with silica. Phase identification of LaF3: Yb^3+ , Er^+ and LaF3: Yb^3+ , Er^+/SiO2 was performed via XRD. The TEM image showed that the size of LaF3: Yb^3+ , Er^+ was 150 nm and LaF3: Yb^3+ , Er^+/SiO2 presented clearly a core/shell structure with 20 nm shell thickness. The upconversion spectra of LaF3: Yb^3+ , Er^+ and LaF3: Yb^3+ , Er^+/SiO2 in solid state and in ethanol were studied with a 980 nm diode laser as the excitation source. The upconversion spectra showed that the silica shell had little effect on the properties of fluorescence of the LaF3:Yb^3+ , Er^+ microcrystals. At the same time, the green luminescence photo of LaF3: Yb3+, Er3+/SiO2 in the PBS buffer was obtained, which indicated that the LaF3: Yb^3+ , Er^+/SiO2 could be used in biological applications.  相似文献   

14.
Tm~(3+)-doped transparent oxyfluoride glass ceramics containing BaYb_xY((1-x))F_5 nanocrystals were prepared via high temperature solid phase melting method,of which up-conversion emission is achieved by the Yb~(3+)-mediated energy transfer process.The required photon number of Tm~(3+)ions emissions in BaYb_xY_((1-x))F_5 nanocrystals was calculated through the luminescence spectra,revealing the strong dependence of energy transfer mechanism on Yb~(3+)ions concentration.Meanwhile,based on the fluore scence intensity ratio technology,the effect of different energy transfer mechanism on the temperature sensitivity was investigated by the temperature-dependent luminescence intensity of thermally coupled energy levels of Tm~(3+):~1G_4(a),~1G_4(b).The obtained sensitivity decreases with the increase of Yb~(3+)ions content,which is mainly attributed to the changes in photon absorption process of Tm~(3+):~1G_4(b).  相似文献   

15.
The Ce3+and Dy3+ co-doped fluorosilicate glass and glass ceramics containing SrF2 or CeF3 nanocrystals were prepared under re-ducing atmosphere. The precipitated nano-crystalline phase shifted from cubic SrF2 to hexagonal CeF3 gradually with the heat treatment tem-perature increasing from 620 to 680 °C. The glass and glass ceramics emitted white light, deriving from a combination of the Ce3+ blue and the Dy3+ yellow light. The CIE coordinates could be tuned by adjusting the ratio of Ce3+/Dy3+ concentration. The luminescence could be en-hanced significantly by annealing the samples at the temperatures lower than 640 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号