首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dielectric properties of chemically vapour-deposited (CVD) amorphous and crystalline Si3N4 were measured in the temperature range from room temperature to 800° C. The a.c. conductivity ( a.c.) of the amorphous CVD-Si3N4 was found to be less than that of the crystalline CVD-Si3N4 below 500° C, but became greater than that of the crystalline CVD-Si3N4 over 500° C due to the contribution of d.c. conductivity ( d.c.). The measured loss factor () and dielectric constant () of the amorphous CVD-Si3N4 are smaller than those of the crystalline CVD-Si3N4 in all of the temperature and frequency ranges examined. The relationships of n-1, (- ) n-1 and/(- ) = cot (n/2) (were observed for the amorphous and crystalline specimens, where is angular frequency andn is a constant. The values ofn of amorphous and crystalline CVD-Si3N4 were 0.8 to 0.9 and 0.6 to 0.8, respectively. These results may indicate that the a.c. conduction observed for both of the above specimens is caused by hopping carriers. The values of loss tangent (tan) increased with increasing temperature. The relationship of log (tan) T was observed. The value of tan for the amorphous CVD-Si3N4 was smaller than that of the crystalline CVD-Si3N4.  相似文献   

2.
We have investigated the magnetic susceptibility, , and the thermal conductivity, , in magnetic fields for the four-leg spin-ladder system La2Cu2O5 single crystal. The in a magnetic field parallel to the ladder exhibits a kink at 130 K in correspondence to the magnetic ordering. The along the ladder exhibits a peak at 25 K and a shoulder at 14 K, which are probably related to the thermal conductivity due to magnons, magnon, and that due to phonons, phonon, respectively. The perpendicular to the ladder, on the other hand, exhibits only one broad peak related to phonon. The observed large anisotropy of has been explained based upon the anisotropy of magnon.  相似文献   

3.
Results are presented from a theoretical determination of coefficients of mass transfer between a fluidized bed of porous particles and a capillary-porous body.Notation a particle radius - F area of contact of particles with the surface of the body - f percentage of area of surface of product in contact with the bubble phase - g acceleration due to gravity - i flow of liquid mass from a unit area of the surface - N number of fluidizations - n number of particles coming into contact with a surface of unit area per unit of time - pp, pb capillary potentials of particles and product - R2, R1 radii of narrow and broad pores inside the product - r radius of capillaries in the particles - S area of the surface being treated - T temperature of the bed - t time of treatment - u percentage content of liquid in the specimen - V volume of the product being treated - v mean square component of the fluctuation velocity of the particles in the direction normal to the surface - , * standard and corrected mass-transfer coefficients determined from (5) and (9) - b, b, p porosities of product determined for all and for only the small pores and the porosity of the material of the particles - d, m porosity of the dense phase and the porosity of the bed in the state of minimum fluidization - b, p angles of wetting of the materials of the product and particles, respectively, by the liquid binder - , viscosity and density of the liquid - 0 density of the dry product - surface tension coefficient of the liquid - characteristic time of contact of particles with the surface - Rem Reynolds number corresponding to particle radius and minimum-bed-fluidization velocity [6] Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 40, No. 3, pp. 460–465, March, 1981.  相似文献   

4.
A one-dimensional model of a disperse mixture in a turbulent stream is constructed, with the mutual effect of mixture concentration and turbulence intensity taken into account.Notation 0 mean-over-the-section density - p pressure - t turbulent viscosity - U average longitudinal velocity - g acceleration of gravity - angle of pipe inclination from the horizontal - x, r cylindrical coordinates - t time - V average radial velocity - C average concentration - Dt turbulent diffusivity - c0 mean-over-the-section concentration - K effective turbulent diffusivity - U0 mean flow velocity - X distance, in the moving system of coordinates - a pipe radius - 0 frictional stress at the inside surface of the pipe - u* transient turbulent velocity - b turbulence intensity - l linear scale factor - chemical potential of mixture - density of mixture - d1, d2 densities of homogeneous fluids - y+ thickness of laminar layer - y distance from the inside pipe surface - + derivative of velocity at the layer boundary on the turbulent side - hydraulic drag - Gr Grashof number - Re Reynolds number - 1, 2, coefficients in the equation for K* - K* dimensionless effective diffusivity - =U0t/2a dimensionless time - =X/2a dimensionless distance Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 22, No. 6, pp. 992–998, June, 1972.  相似文献   

5.
Summary The response of a solidly rotating liquid bridge consisting of inviscid liquid is determined for pitch excitation about its undisturbed center of mass. Free liquid surface displacement and velocity distribution has been determined in the elliptic (>20) and hyperbolic (<20) excitation frequency range.List of symbols a radius of liquid column - h length of column - I 1 modified Besselfunction of first kind and first order - J 1 Besselfunction of first kind and first order - r, ,z cylindrical coordinates - t time - u, v, w velocity distribution in radial-, circumferential-and axial direction resp. - mass density of liquid - free surface displacement - velocity potential - 0 rotational excitation angle - 0 velocity of spin - forcing frequency - 1n natural frequency - surface tension - acceleration potential - for elliptic range >20 - for hyperbolic range >20  相似文献   

6.
Ramkissoon  H. 《Acta Mechanica》1997,123(1-4):227-233
Summary Creeping axisymmetric slip flow past a spheroid whose shape deviates slightly from that of a sphere is investigated. An exact solution is obtained to the first order in the small parameter characterizing the deformation. As an application, the case of flow past an oblate spheroid is considered and the drag experienced by it is evaluated. Special well-known cases are deduced and some observations made.Notation A n, Bn, Cn, Dn, En, Fn, b2, d2 Constants - a, b radii of spheres - coefficient of sliding fraction - D drag - , m parameters characterizing the deformation of the sphere - c a(1+) - viscosity coefficient - - dimensionless coordinate - I n Gegenbauer function - P n Legendre function - Stream function - U stream velocity at infinity  相似文献   

7.
The possibility of analyzing the nonsteady temperature fields of inhomogeneous systems using the quasi-homogeneous-body model is investigated.Notation t, tI, ti temperature of quasi-homogeneous body inhomogeneous system, and i-th component of system - a, , c thermal diffusivity and conductivity and volume specific heat of quasi-homogeneous body - ai i, ci same quantities for the i-th component - q heat flux - S, V system surface and volume - x, y coordinates - macrodimension of system - dimensionless temperature Fo=a/2 - Bi=/ Fourier and Biot numbers - N number of plates - =h/ ratio of micro- and macrodimensions - V, volumeaveraged and mean-square error of dimensionless-temperature determination - time - mi i-th component concentration Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 39, No. 1, pp. 126–133, July, 1980.  相似文献   

8.
From investigations of two-magnon Raman scattering (RS) under high pressures up to 430 kbar in Eu2CuO4 and YBa2Cu3O6.2 crystals, it was shown that the dependence of the superexchange integralJ on the distance between Cu and O atoms in CuO2 planesa is anomalously weak (Ja–n, n=3±0.5). The large value ofJ indicates strong initial overlapping of Cu and O wave functions in high-T c , materials. It was found that an increase in free carrier concentration results in a rapid increase of magnon damping and the disappearance of the two-magnon peak from RS spectra. A detailed study of electron Raman scattering has been carried out in superconducting and insulating YBa2Cu3O6–x , single crystals. The spectral redistribution at frequencies<600 cm–1 in different polarizations indicate that the superconducting gap is strongly anisotropic. In the normal (metallic) phase the behavior of the imaginary part of the response functionR() in the polarization (xx) corresponds to the model of a marginal Fermi liquid, and in the polarization (xx), this behavior is independent of the temperature. In insulating crystals,R() is independent of temperature toT200 K in both polarizations.  相似文献   

9.
Using the structural approach, the temperature stresses are examined in a semiinfinite rod, insulated on the lateral faces and rigidly fixed at the end. A comparative analysis is made for three heat-transfer models.Notation k(t) heat flux relaxation function - (t) internal energy relaxation function - T rod temperature - ambient temperature - t time - x coordinate along the rod - xx(x, t) stress - u(x, t) displacement - (x, t) deformation - c0=(E/)1/2 speed of sound in the rod under isothermal conditions - E elasticity modulus - density of the material - t coefficient of thermal expansion - thermal-conductivity coefficient - a thermal-diffusivity coefficient - b thermal-activity coefficient - cq=(a/r)1/2 velocity of heat propagation - r heat flux relaxation time - (t) unique Heaviside function Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 33, No. 5, pp. 912–921, November, 1977.  相似文献   

10.
We have investigated the dynamic behavior of a nonionic micellar solution of tetra-ethylene glycoln-decylether (C10 E4) in water near its critical point in the presence of shear. The non-Newtonian behavior of the viscosity can be represented by * = [ 1 +a(S4)=]2, where* is the viscosity in the absence of shear,S is the shear rate. 4 is the lifetime of the critical Iluctuations,a is a system-dependent constant, and = 0.02 In addition, we have found that, before attaining a steady state, the sheared mixture undergoing phase separation shows significant shear-dependent rheological effects due to the presence of concentration domains.Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19–24. 1994, Boulder, Colorado, U.S.A.  相似文献   

11.
Surface impedance measurements in the normal and superconducting state are an excellent method to study conduction electron dynamics and extended defects. Electron dynamics show up most clearly in the relaxation range, i.e., for distances traveled in one rf periods= F/ ( F Fermi velocity) being smaller or of the order of the penetration depth and mean free pathl. For materials with F107 cm/sec the relaxation range is easily accessible forf0.1 THz. Then, in the normal state, relaxation defines the surface impedance with an intrinsic penetration depth I approaching the London penetration depth L andR I 0 L/ 2 as surface resistance, allowing measurement of L and relaxation time(T, ). In the superconducting state the photon interaction scales with L/ L=1/( F dimension of Cooper pairs forl) and causes at low frequencies an absorption rate growing with, which is decreasing with F/l. The rate increase proportional to turns to a decrease above 0.1 THz, which is accompanied by a decrease ofA with frequency which is stronger for large and small F/l. These characteristic dependences allow measurement of material parameters, anisotropy, and dynamics of electrons, especially the relaxation rate. But presently, the rf surface impedanceZ is still shrinking with material improvements, which shows, clearly, that theZ=Z I+Z res is still dominated by extrinsic properties summarized inZ res. We present evidence thatZ res is due to the large leakage currentj bl and the smallj cJ of weak links where the latter destroys the intrinsic shielding from a I-thin seam J deep into the bulk. This causes rf residual lossesR res( 0)2 J 3 bl/2.R res stays finite atT-0 due to bl(T0) bl(j bl) being amplified by ( J/ I)3>103 as a weighting factor. The appropriate measure of weak links are the grain-boundary resistanceR bn((0)) enhancing JR bn andR resR bn 2 . Thus,Z res is minimal for minimal extrapolated resistivity(T0).To identify the weak links as a new entity, the H-field dependence is most helpful, because at very low fieldsH c 1J1/ J Josephson fluxons penetrate into the weak links. These Josephson fluxons show negligible flux flow or flux creep, and enhanceZ res by J(H, T) . The measuredj cJ(H, T) andj bl values explainZ res quantitatively as well as in temperature (a+T n ) (n1,T<T c /2) and in field (b+H n ) (n1,H>H c1J) dependence. The strength of the field dependencedZ res/dHZ res(H c1J )/H c2J(T) is not only a measure ofZ res andH c2J(T) but is crucial for nonlinear effects and (fluxon) noise also, which limit the performance of rf devices.  相似文献   

12.
The distribution of gas flows in the vicinity of the jet is discussed and the conditions of disruption of the static equilibrium of the bed, the formation and growth of a cavity, and the jet breakthrough of the bed are investigated qualitatively.Notation a, b functions calculated in [11] - C, C constants in (7) - F derivative of the complex potential - f function in (6) - G function defined in (19) - H dimensionless height of bed - h height of cavity - k coefficient introduced in (15) - p, po pressure inside bed and in cavity - p dimensionless pressure drop - Q, q dimensional and dimensionless jet flow rates - q1, q2 critical values - T dimensionless height of cavity - T0, T1 T1, T2 characteristic values of T - u,v filtration velocities - u, u* initial filtration velocity in the bed and minimum fluidization velocity - uo velocity scale introduced in (14) - u * velocity scale introduced in (14) - u* velocity of fictitious flow defined in (15) - U complex velocity - Z=X+iY, z=x+iy dimensionless coordinates - z=x+iy dimensional coordinates - coefficient of hydraulic resistance - parameter from (5) - specific weight of particles' material - porosity - =+i coordinates in the plane obtained from z=x+iy as a result a of conformai transformation - m value of giving a minimum of the function G - f complex and real flow potentials - angle of internal friction - stream function - angle of inclination of boundaries of the region of plastic flow to the vertical Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 37, No. 5, pp. 804–812, November, 1979.  相似文献   

13.
A method is described for measuring the temperature of a non-steady-state gas flow with a thermocouple which is an inertial component of the first order.Notation T*f non-steady-state gas flow temperature - Tt thermosensor temperature - thermal inertia factor of thermosensor - time - C total heat capacity of thermosensor sensitive element - S total heat-exchange surface between sensitive element and flow - heat-liberation coefficient - temperature distribution nonuniformity coefficient in sensitive element - Re, Nu, Pr, Bi, Pd hydromechanical and thermophysical similarity numbers - P* total flow pressure - P static flow pressure - T* total flow temperature - dt sensitive element diameter - w gas flow velocity - flow density - flow viscosity - f flow thermal conductivity - k gas adiabatic constant - R universal gas constant - M Mach number - T thermodynamic flow temperature - o, o and values at T=288°K - A, m, n, p, r coefficients - c heat-liberation coefficient due to colvection - r heat-liberation coefficient due to radiation - b emissivity of sensitive element material - Stefan-Boltzmann constant - Te temperature of walls of environment - c, r, tc thermosensor thermal inertia factors due to convective, radiant, and conductive heat exchange - L length of sensitive element within flow - a thermal diffusivity of sensitive element material - t thermal conductivity of sensitive element material Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 47, No. 1, pp. 59–64, July, 1984.  相似文献   

14.
An examination is made of the theoretical basis and implementation of a nonstationary method of rapid measurement of the thermal conductivity of powdered and fibrous insulation under conditions of monotonic change of filler gas pressure.Notation t temperature - ,a thermal conductivity and diffusivity of test material - k, ka relative temperature coefficients of anda - thickness of test layer - x variable layer coordinate reckoned from shell - =(x), c excess temperature of material at section x and of core over shell - bc, bv rate of cooling of core and of variation of volume-mean temperature of layer - cc, c total heat capacity of core and material - fs, Fc area of working surfaces of shell and core - d diameter of particles of bulk material - p material porosity - volume density of material  相似文献   

15.
The temperature of carbon particles undergoing combustion in a fluidized bed is measured. Heat-transfer laws are ascertained.Notation a diffusivity of air - c heat capacity of air - D diffusion coefficient of oxygen in air - d0, d initial and running diameters of carbon sphere - di diameter of inert particles - k rate constant for carbon monoxide combustion - q calorific value of carbon oxidation to CO2 - T temperature difference between burning particle and fluidized bed - X, Xn oxygen concentration in the fluidized bed and on the surface of the burning particle - Z, Zn running concentration of carbon monoxide and concentration on the surface of the burning particle - heat-transfer coefficient between fluidized bed and burning particle - m maximum heat-transfer coefficient between fluidized bed and a stationary body submerged in the bed - masstransfer coefficient between fluidized bed and burning particle - thermal conductivity of air - kinematic viscosity of air - 0, gr, 4 density of oxygen, air, and inert material - relative thickness of burning gas layer - relative thickness of diffusion boundary layer Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 42, No. 1, pp. 21–27, January, 1982.  相似文献   

16.
The problem of universal simulation of the dynamics of a turbulent velocity field (universal in the sense of arbitrary values of the Reynolds turbulence number) is treated on the basis of the moment model in the second approximation.Notation ¯q2 i 2 double the kinetic turbulence energy - u 2 =5v¯q2/u Taylor turbulence scale squared - u=v1/xk)2> kinetic-energy dissipation function - NRe,=¯q2u / Reynolds turbulence number Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 42, No. 1, pp. 46–52, January, 1982.  相似文献   

17.
Summary Previous methods of calculating the internal impedance of rectangular and T-shaped conductors have made arbitrary assumptions about the form of the magnetic field. These have led to inconsistencies. A method is developed which necessitates less restrictive assumptions, thereby removing the inconsistencies. Results are compared for typical conductor sizes.List of symbols a, b, c, d dimensions of conductor or slot - J current density - E electric field strength - V scalar potential - I current (r.m.s.) in conductor - B flux density - H magnetic field strength with componentsH x,H y in thex, y coordinate directions respectively - L inductance/unit length - R resistance/unit length - A vector potential - A modified vector potential - A *,A ** single and double cosine transforms ofA - conductivity of conductor - relative permeability of conductor - angular frequency - 2 j 0 - m, n transform parameters - C m {(m/c)2+ 1 2 }1/2 - D n {(n/d)2+ 2 2 }1/2 - P m,Q n coefficients - K constant of integration - Re, Im real imaginary parts of complex function respectively  相似文献   

18.
Some general regularities of dispersion of a gas emerging from a nozzle submerged in a liquid are considered. A condition for establishment of the so-called maximum dispersion state is formulated.Notation 0 coefficient of surface tension at the liquidgas boundary - contact angle of wetting of the nozzle material surface by the liquid - pat atmospheric pressure - p air pressure - density of the liquid - g gravitational acceleration - h height of the liquid column - 1, and g dynamic viscosity coefficients of the liquid and gas, respectively - R and r radii of the bubble and nozzle, respectively - Q and F dimensionless criteria - , , , , and undetermined coefficients - ratio of the circumference of a circle to its diameter  相似文献   

19.
An empirical comparison is made of the accuracy of platinum-rhodium-platinum and Chromel-Alumel thermocouples in determining the thermal conductivity of substances.Notation T, t temperature - temperature difference - y thermocouple readings - Ai parameters of approximating equation - sensitivity of thermocouple - sensitivity found from the generalized function - st standard values of sensitivity - S0 standard deviation of sensitivity for a given series - maximum deviation of from in different series - I, II indices indicating that the values pertain to platinum-rhodium —platinum and Chromel —Alumel thermocouples, respectively Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 39, No. 2, pp. 306–310, August, 1980.  相似文献   

20.
Magnetoconductance and excess conductance due to superconducting fluctuations in aluminum films are measured in order to study the temperature dependence of the pair-breaking parameter at temperatures nearT c . The parameter M is estimated from the relation =/8k B Tin, where in is the inelastic scattering time deduced from the analysis of the magnetoconductance. The parameter F is determined by fitting theories to data on the excess conductance at zero magnetic field. It is shown that: (1) For films with a wide range of the sheet resistanceR , 12R 200 /, the temperature dependence of M nearT c agrees well with the theory of Brenig et al. (2) For clean films withR 100 /, the value of F analyzed with theories including the correction term to the Maki-Thompson contribution shows almost the same temperature dependence as M . In a film withR 200 /, however, a discrepancy between M and F remains.On leave from College of General Education, Kyushu University, Ropponmatsu, Fukuoka, Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号