首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce a method based on Kolmogorov complexity to prove lower bounds on communication complexity. The intuition behind our technique is close to information theoretic methods.We use Kolmogorov complexity for three different things: first, to give a general lower bound in terms of Kolmogorov mutual information; second, to prove an alternative to Yao’s minmax principle based on Kolmogorov complexity; and finally, to identify hard inputs.We show that our method implies the rectangle and corruption bounds, known to be closely related to the subdistribution bound. We apply our method to the hidden matching problem, a relation introduced to prove an exponential gap between quantum and classical communication. We then show that our method generalizes the VC dimension and shatter coefficient lower bounds. Finally, we compare one-way communication and simultaneous communication in the case of distributional communication complexity and improve the previous known result.  相似文献   

2.
The standard setting of quantum computation for continuous problems uses deterministic queries and the only source of randomness for quantum algorithms is through measurement. Without loss of generality we may consider quantum algorithms which use only one measurement. This setting is related to the worst case setting on a classical computer in the sense that the number of qubits needed to solve a continuous problem must be at least equal to the logarithm of the worst case information complexity of this problem. Since the number of qubits must be finite, we cannot solve continuous problems on a quantum computer with infinite worst case information complexity. This can even happen for continuous problems with small randomized complexity on a classical computer. A simple example is integration of bounded continuous functions. To overcome this bad property that limits the power of quantum computation for continuous problems, we study the quantum setting in which randomized queries are allowed. This type of query is used in Shor’s algorithm. The quantum setting with randomized queries is related to the randomized classical setting in the sense that the number of qubits needed to solve a continuous problem must be at least equal to the logarithm of the randomized information complexity of this problem. Hence, there is also a limit to the power of the quantum setting with randomized queries since we cannot solve continuous problems with infinite randomized information complexity. An example is approximation of bounded continuous functions. We study the quantum setting with randomized queries for a number of problems in terms of the query and qubit complexities defined as the minimal number of queries/qubits needed to solve the problem to within ɛ by a quantum algorithm. We prove that for path integration we have an exponential improvement for the qubit complexity over the quantum setting with deterministic queries.  相似文献   

3.
This work studies the quantum query complexity of Boolean functions in an unbounded-error scenario where it is only required that the query algorithm succeeds with a probability strictly greater than 1/2. We show that, just as in the communication complexity model, the unbounded-error quantum query complexity is exactly half of its classical counterpart for any (partial or total) Boolean function. Moreover, connecting the query and communication complexity results, we show that the “black-box” approach to convert quantum query algorithms into communication protocols by Buhrman-Cleve—Wigderson [STOC’98] is optimal even in the unbounded-error setting.We also study a related setting, called the weakly unbounded-error setting, where the cost of a query algorithm is given by q+log(1/2(p−1/2)), where q is the number of queries made and p>1/2 is the success probability of the algorithm. In contrast to the case of communication complexity, we show a tight multiplicative Θ(logn) separation between quantum and classical query complexity in this setting for a partial Boolean function. The asymptotic equivalence between them is also shown for some well-studied total Boolean functions.  相似文献   

4.
de Beaudrap  Cleve  Watrous 《Algorithmica》2008,34(4):449-461
Abstract. We obtain the strongest separation between quantum and classical query complexity known to date—specifically, we define a black-box problem that requires exponentially many queries in the classical bounded-error case, but can be solved exactly in the quantum case with a single query (and a polynomial number of auxiliary operations). The problem is simple to define and the quantum algorithm solving it is also simple when described in terms of certain quantum Fourier transforms (QFTs) that have natural properties with respect to the algebraic structures of finite fields. These QFTs may be of independent interest, and we also investigate generalizations of them to noncommutative finite rings.  相似文献   

5.
We study the power of nonadaptive quantum query algorithms, which are algorithms whose queries to the input do not depend on the result of previous queries. First, we show that any bounded-error nonadaptive quantum query algorithm that computes a total boolean function depending on n variables must make Ω(n) queries to the input in total. Second, we show that, if there exists a quantum algorithm that uses k nonadaptive oracle queries to learn which one of a set of m boolean functions it has been given, there exists a nonadaptive classical algorithm using queries to solve the same problem. Thus, in the nonadaptive setting, quantum algorithms for these tasks can achieve at most a very limited speed-up over classical query algorithms.  相似文献   

6.
Randomized computations can be very powerful with respect to space complexity, e.g., for logarithmic space, LasVegas is equivalent to nondeterminism. This power depends on the possibility of infinite computations, however, it is an open question if they are necessary. We answer this question for rotating finite automata (rfas) and sweeping finite automata (sfas). We show that LasVegas rfas (sfas) allowing infinite computations, although only with probability 0, can be exponentially smaller than LasVegas rfas (sfas) forbidding them. In particular, we show that even rfas (sfas) with linear expected running time may require exponentially more states than rfas (sfas) running in exponential time. We also strengthen this result, showing that the restriction on time cannot be traded for the more powerful bounded-error randomization. To prove our results, we introduce a technique for proving lower bounds on size of rfas (sfas) that generalizes the notion of generic strings discovered by M. Sipser.  相似文献   

7.
Integer multiplication as one of the basic arithmetic functions has been in the focus of several complexity theoretical investigations and ordered binary decision diagrams (OBDDs) are one of the most common dynamic data structures for Boolean functions. Recently, the question whether the OBDD complexity of the most significant bit of integer multiplication is exponential has been answered affirmatively. In this paper a larger general lower bound is presented using a simpler proof. Furthermore, we prove a larger lower bound for the variable order assumed to be one of the best ones for the most significant bit. Moreover, the best known lower bound on the OBDD complexity for the so-called graph of integer multiplication is improved.  相似文献   

8.
We introduce an intermediate setting between quantum nonlocality and communication complexity problems. More precisely, we study the value of XOR games when Alice and Bob are allowed to use a limited amount (c bits) of one-way classical communication compared to their value when they are allowed to use the same amount of one-way quantum communication (c qubits). The key quantity here is the ratio between the quantum and classical value. We provide a universal way to obtain Bell inequality violations of general Bell functionals from XOR games for which the previous quotient is larger than 1. This allows, in particular, to find (unbounded) Bell inequality violations from communication complexity problems in the same spirit as the recent work by Buhrman et al. (PNAS 113(12):3191–3196, 2016). We also provide an example of a XOR game for which the previous quotient is optimal (up to a logarithmic factor) in terms of the amount of information c. Interestingly, this game has only polynomially many inputs per player. For the related problem of separating the classical versus quantum communication complexity of a function, the known examples attaining exponential separation require exponentially many inputs per party.  相似文献   

9.
We deal with the problem of finding a maximum of a function from the Hölder class on a quantum computer. We show matching lower and upper bounds on the complexity of this problem. We prove upper bounds by constructing an algorithm that uses a pre-existing quantum algorithm for finding maximum of a discrete sequence. To prove lower bounds we use results for finding the logical OR of sequence of bits. We show that quantum computation yields a quadratic speed-up over deterministic and randomized algorithms.  相似文献   

10.
On the complexity of simulating space-bounded quantum computations   总被引:1,自引:0,他引:1  
This paper studies the space-complexity of predicting the long-term behavior of a class of stochastic processes based on evolutions and measurements of quantum mechanical systems. These processes generalize a wide range of both quantum and classical space-bounded computations, including unbounded error computations given by machines having algebraic number transition amplitudes or probabilities. It is proved that any space s quantum stochastic process from this class can be simulated probabilistically with unbounded error in space O(s), and therefore deterministically in space O(s2).  相似文献   

11.
Most proposals for quantum solutions of information-theoretic problems rely on the usage of multi-partite entangled states which are still difficult to produce experimentally with current state-of-the-art technology. Here, we analyze a scheme to simplify a particular kind of multiparty communication protocols for the experiment. We prove that the fidelity of two communication complexity protocols, allowing for an N ? 1 bit communication, can be exponentially improved by N ? 1 (unentangled) qubit communication. Taking into account, for a fair comparison, all inefficiencies of state-of-the-art set-up, the experimental implementation for N = 5 outperforms the best classical protocol, making it the candidate for multi-party quantum communication applications.  相似文献   

12.
13.
We present a quantum algorithm which identifies with certainty a hidden subgroup of an arbitrary finite group G in only a polynomial (in log|G|) number of calls to the oracle. This is exponentially better than the best classical algorithm. However our quantum algorithm requires exponential time, as in the classical case. Our algorithm utilizes a new technique for constructing error-free algorithms for non-decision problems on quantum computers.  相似文献   

14.
Integer multiplication as one of the basic arithmetic functions has been in the focus of several complexity theoretical investigations and ordered binary decision diagrams (OBDDs) are one of the most common dynamic data structures for Boolean functions. Only in 2008 the question whether the deterministic OBDD complexity of the most significant bit of integer multiplication is exponential has been answered affirmatively. Since probabilistic methods have turned out to be useful in almost all areas of computer science, one may ask whether randomization can help to represent the most significant bit of integer multiplication in smaller size. Here, it is proved that the randomized OBDD complexity is also exponential.  相似文献   

15.
We continue the systematic investigation of probabilistic and quantum finite automata (PFAs and QFAs) on promise problems by focusing on unary languages. We show that bounded-error unary QFAs are more powerful than bounded-error unary PFAs, and, contrary to the binary language case, the computational power of Las-Vegas QFAs and bounded-error PFAs is equivalent to the computational power of deterministic finite automata (DFAs). Then, we present a new family of unary promise problems defined with two parameters such that when fixing one parameter QFAs can be exponentially more succinct than PFAs and when fixing the other parameter PFAs can be exponentially more succinct than DFAs.  相似文献   

16.
Answer set programming is a declarative programming paradigm rooted in logic programming and non-monotonic reasoning. This formalism has become a host for expressing knowledge representation problems, which reinforces the interest in efficient methods for computing answer sets of a logic program. The complexity of various reasoning tasks for general answer set programming has been amply studied and is understood quite well. In this paper, we present a language fragment in which the arities of predicates are bounded by a constant. Subsequently, we analyze the complexity of various reasoning tasks and computational problems for this fragment, comprising answer set existence, brave and cautious reasoning, and strong equivalence. Generally speaking, it turns out that the complexity drops significantly with respect to the full non-ground language, but is still harder than for the respective ground or propositional languages. These results have several implications, most importantly for solver implementations: Virtually all currently available solvers have exponential (in the size of the input) space requirements even for programs with bounded predicate arities, while our results indicate that for those programs polynomial space should be sufficient. This can be seen as a manifestation of the “grounding bottleneck” (meaning that programs are first instantiated and then solved) from which answer set programming solvers currently suffer. As a final contribution, we provide a sketch of a method that can avoid the exponential space requirement for programs with bounded predicate arities. Some results in this paper have been presented in preliminary form at KR 2004 [15].  相似文献   

17.
The real-time probabilistic simulation of quantum systems in classical computers is known to be limited by the so-called dynamical sign problem, a problem leading to exponential complexity. In 1981 Richard Feynman raised some provocative questions in connection to the “exact imitation” of such systems using a special device named a “quantum computer”. Feynman hesitated about the possibility of imitating fermion systems using such a device. Here we address some of his concerns and, in particular, investigate the simulation of fermionic systems. We show how quantum computers avoid the sign problem in some cases by reducing the complexity from exponential to polynomial. Our demonstration is based upon the use of isomorphisms of algebras. We present specific quantum algorithms that illustrate the main points of our algebraic approach.  相似文献   

18.
Time-Space Tradeoffs for Undirected Graph Traversal by Graph Automata   总被引:1,自引:0,他引:1  
We investigate time-space tradeoffs for traversing undirected graphs, using a variety of structured models that are all variants of Cook and Rackoff's “Jumping Automata for Graphs.” Our strongest tradeoff is a quadratic lower bound on the product of time and space for graph traversal. For example, achieving linear time requires linear space, implying that depth-first search is optimal. Since our bound in fact applies to nondeterministic algorithms fornonconnectivity, it also implies that closure under complementation of nondeterministic space-bounded complexity classes is achieved only at the expense of increased time. To demonstrate that these structured models are realistic, we also investigate their power. In addition to admitting well known algorithms such as depth-first search and random walk, we show that one simple variant of this model is nearly as powerful as a Turing machine. Specifically, for general undirected graph problems, it can simulate a Turing machine with only a constant factor increase in space and a polynomial factor increase in time.  相似文献   

19.
Given exponential 2 n space, we know that an Adleman-Lipton computation can decide many hard problems – such as boolean formula and boolean circuit evaluation – in a number of steps that is linear in the problem size n. We wish to better understand the process of designing and comparing bio-molecular algorithms that trade away weakly exponential space to achieve as low a running time as possible, and to analyze the efficiency of their space and time utilization relative to those of their best extant classical/bio-molecular counterparts. We propose a randomized framework which augments that of the sticker model of Roweis et al. to provide an abstract setting for analyzing the space-time efficiency of both deterministic and randomized bio-molecular algorithms. We explore its power by developing and analyzing such algorithms for theCovering Code Creation (CCC) and k-SAT problems. In the process, we uncover new classical algorithms for CCC andk-SAT that, while exploiting the same space-time trade-off as the best previously known classical algorithms, are exponentially more efficient than them in terms of space-time product utilization. This work indicates that the proposed abstract bio-molecular setting for randomized algorithm design provides a logical tool of independent interest. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
《国际计算机数学杂志》2012,89(3-4):273-297
Direct complementary pivot algorithms for the linear complementarity problem with P-matrices are known to have exponential computational complexity. The analog of Gauss-Seidel and SOR iteration for linear complementarity problems with P-matrices has not been extensively developed. This paper extends some work of van Bokhoven to a class of nonsymmetric P-matrices, and develops and compares several new iterative algorithms for the linear complementarity problem. Numerical results for several hundred test problems are presented. Such indirect iterative algorithms may prove useful for large sparse complementarity problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号