首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-dimensional finite element analysis is presented to predict crack growth behavior of cracked panels repaired with bonded composite patch. Fatigue experiments were conducted with precracked aluminum specimens of two thicknesses (1 and 6.35 mm), with and without debond, and repaired asymmetrically. Fatigue lives of thick and thin repaired panels extended four and ten times relative to unrepaired cases, respectively. The predicted fatigue crack growth rates were in agreement with experimental values at the unpatched face but not at the patched face. Thus, the present analysis provides a conservative assessment of durability and damage tolerance of repaired thin and thick panels.  相似文献   

2.
Fatigue crack growth behavior in a stiffened thin 2024-T3 aluminum panel repaired with one-sided adhesively bonded composite patch was investigated through experiments and analyses. The patch had three plies of unidirectional boron/epoxy composite. 2024-T3 aluminum stiffeners were riveted as well as bonded on the panel. Stiffeners were oriented in the loading direction and were spaced at either 102 mm or 152 mm with a crack centered between them. Also, un-repaired cracked panel with and without stiffeners were studied. Experiment involved tension-tension fatigue at constant amplitude with maximum stress of 120 MPa and stress ratio of 0.05. Bonded composite patch repair increased fatigue life about five-fold in the case of stiffened panels while it increased about ten fold in the case of un-stiffened panels. Fatigue life also increased with decrease of the distance between the stiffeners for both repaired and un-repaired panels. A three-dimensional finite element method was used to analyze the experiments. Residual thermal stresses, developed during patch bonding, requires the knowledge of temperature at which adhesive becomes effective in creating a bond between the structure and patch in the analysis. A simple method to estimate the effective curing temperature range is suggested in this study. The computed stress intensity factor versus measured crack growth relationships for all panel configurations were consistent and in agreement with the counterpart from the test material. Thus, the present approach provides a means to analyze the fatigue crack growth behavior of stiffened structures repaired with adhesively bonded composite patch.  相似文献   

3.
金属裂纹板复合材料单面胶接修补结构应力分析   总被引:3,自引:0,他引:3       下载免费PDF全文
考虑金属裂纹板复合材料单面胶接修补结构的几何非线性和边界条件,建立了考虑弯曲变形单面修补结构力学分析模型,计算出承受面内载荷时修补结构的弯矩和挠度,将补片自由端和金属板裂纹处的弯矩作为胶层应力控制微分方程的边界条件,推导出剪应力和剥离应力的解析解,及裂纹张开位移的表达式,并与有限元数值结果进行对比。分析结果表明,胶接修补结构应力分析理论模型和相关简化假设合理、正确。利用所建立的解析模型研究了金属裂纹复合材料单面胶接修补结构的应力分布特点及胶层主导破坏模式的失效机制,为胶接修补结构的承载能力分析以及结构改进设计提供了一定的理论依据。  相似文献   

4.
The performance of a bonded repair for cracked holes has been studied using the three dimensional finite element method, linear elastic fracture mechanics and strain energy density theory. Increasing the composite patch size reduces the strain energy level at the crack tip; increasing the patch length normal to the crack is a better choice. The stacking sequences of the laminated patch have little influence on the strain energy distribution in the vicinity of the crack. To repair the cracked holes of aircraft components subjected to variable direction loading during flight, the orientations of the patch ply, 90° and ±45° with respect to the crack direction, are the optimum selection in bonded repairs.  相似文献   

5.
Bolted patch repair of composite panels with a cutout   总被引:1,自引:0,他引:1  
The present investigation concerns the analysis of bolted patch repairs of flat composite panels by using a complex potential–variational method. The validity of the current analysis predictions is established by comparison against experimental measurements and previous predictions. The experimental investigation used two patch repairs, with different bolt patterns, of a cutout in an aluminum skin under uniaxial loading. The previous predictions were made for a patch-repaired composite skin with 16 bolts under uniaxial loading. The same patch repair configuration is analyzed here under more complex loading conditions and with two bolts missing, leading to a non-symmetric bolt arrangement. Also, the influence of patch geometry and bolt pattern on the effectiveness of the repair is investigated by considering an elliptical cutout in the skin.  相似文献   

6.
Adhesively bonded patch repairs for cracked finite sheets are analysed by the boundary element method. The interaction between the plate and the patch on a repaired sheet is modelled as a distribution of forces which include in-plane, out-of-plane and two moment body forces. The coupled boundary integral formulations of shear deformable plate (Mindlin theory) and two-dimensional plane stress elasticity are presented. Stress intensity factors, three for the bending problem and two for the membrane problem, are evaluated from crack opening displacements. Several examples are presented to demonstrate the accuracy and efficiency of the proposed method. Comparison with two-dimensional solutions demonstrate the significance of the bending loads on the stress intensity factors.  相似文献   

7.
A new boundary element formulation for analysis of curved cracked panels with adhesively bonded patches is presented in this paper. The effect of the adhesive layer is modelled by distributed body forces (i.e. two in‐plane forces, two moments and one out‐of‐plane force). A coupled boundary integral formulation of a shear deformable plate and two‐dimensional plane stress elasticity is used to determine bending and membrane forces along the adhesive layer taking into consideration the compatibility conditions in the patch area. Two numerical examples are presented to demonstrate the efficiency of the proposed method. It is shown that the out‐of‐plane bending behaviour and panel curvature have significant influence on the magnitude of the stress intensity factors. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, we investigated the fatigue crack growth behavior of cracked aluminum plate repaired with bonded composite patch especially in thick plate. Adhesively bonded composite patch repair technique has been successfully applied to military aircraft repair and expanded its application to commercial aircraft industry recently. Also this technique has been expanded its application to the repair of load bearing primary structure from secondary structure repair. Therefore, a through understanding of crack growth behavior of thick panel repaired with bonded composite patch is needed. We investigated the fatigue crack growth behavior of thick panel repaired with bonded composite patch using the stress intensity factor range (ΔK) and fatigue crack growth rate (da/dN). The stress intensity factor of patched crack was determined from experimental result by comparing the crack growth behavior of specimens with and without repair. Also, by considering the three-dimensional (3D) stress state of patch crack, 3D finite element analyses were performed to obtain the stress intensity factor of crack repaired by bonded composite patch. Two types of crack front modeling, i.e. uniform crack front model and skew crack front model, were used. The stress intensity factor calculated using FEM was compared with the experimentally determined values.  相似文献   

9.
This study introduces an analytical procedure to characterize the fatigue crack growth behavior in an aluminium panel repaired with a bonded composite patch. This procedure involves the computation of the stress intensity factor from a two-dimensional finite element method consisting of three layers to model cracked plate, adhesive and composite patch. In this three layer finite element analysis, as recently introduced by the authors, two-dimensional Mindlin plate elements with transverse shear deformation capability are used. The computed stress intensity factor is then compared with the experimental counterpart. The latter was obtained from the measured fatigue crack growth rate of an aluminium panel with a bonded patch by using the power law relationship (Paris Law) of an unpatched aluminum panel. Both a completely bonded patch (with no debond) and a partially bonded patch (with debond) are investigated in this study. This procedure, thus, provides an effective and reliable technique to predict the fatigue life of a repaired structure with a bonded patch, or alternatively, it can be used to design the bonded composite patch configuration to enhance the fatigue life of cracked structure.  相似文献   

10.
Analysis of cracked plates with a bonded patch   总被引:5,自引:0,他引:5  
The problem of a cracked plate repaired by an adhesively bonded patch is studied. A shear spring model is adopted to reduce the problem to the analysis of a cracked plate and a patch subjected to external loads and interacting adhesive shear. While the patch is treated by the finite element method, the cracked plate is analyzed by the boundary element method, in which a special fundamental solution satisfying the boundary condition on the crack surface is introduced. The present formulation provides comparable results on the stress intensity factor of the patched crack with less computational effort.  相似文献   

11.
A three-dimensional finite element model is utilized to capture the effects of plasticity-induced crack closure (PICC) on an adhesively bonded patch repair of a cracked plate. To accurately capture the PICC process the choice of material model employed is of significant importance, therefore this paper considers a relatively new model, the Ellyin–Xia model. The paper shows that the PICC phenomenon is beneficial to the repair.  相似文献   

12.
A combined boundary element method and finite element method (BEM/FEM) is employed to investigate the fatigue crack growth behavior of cracked aluminum panels repaired with an adhesively bonded fiber-reinforced polymer (FRP) composite patch. Numerical simulation of crack growth process of a cracked aluminum panel repaired with a FRP composite patch under uniaxial cyclic loading has been carried out. The curve of crack length on unpatched side of the cracked panel versus the number of cyclic loading is determined by the numerical simulation, and it agrees well with experimental data. Furthermore, the crack front profiles of the cracked panel during fatigue crack growth and the distributions of stress intensity factors along crack fronts are also numerically simulated.  相似文献   

13.
In this study, the crack growth behaviour of an aluminium plate cracked at the tip and repaired with a bonded boron/epoxy composite patch in the case of full-width disbond was investigated. This effect is the imperfection which could result during the bonded patch of the repaired structure. Disbonds of various sizes and situated at different positions with respect to the crack tip as well as the effect of adhesive and patch thickness on repair performance were examined. An analysis procedure involving the efficient finite element modelling applied to cracked plate, adhesive and composite patch was used to compute the stress intensity factors. The crack growth rate is dominated by the stress intensity factor near the location and size of the pre-existing disbonds. The cracked plate and disbond propagation result in an increase in the patch deformation. The patch does not have an influence on the crack growth when the ratio 2a/dR exceeds 0.8.  相似文献   

14.
In this study, the three-dimensional finite element method is used to analyze the effects of the patch shape on the efficiency end the durability of bonded composite repairs of aircraft structures. The stress intensity factor at the crack tip is used as fracture criteria. The determination of this factor allows us to estimate the repair efficiency. The analysis of the stresses distribution in the adhesive layer allows us to estimate the durability of the adhesion between the damaged plate and the composite patch. The obtained results show that the repair performances are closely related to the patch shape. It was demonstrated that the rectangular shape of the patch could be improved using an “H” shape of the patch. This last shape could also be improved using an arrow shape.  相似文献   

15.
The problem of a cracked, stiffened metallic sheet adhesively bonded by a composite patch is analyzed. The composite patch is assumed to be either an infinite orthotropic sheet or an infinite orthotropic strip normal to the crack. Due to the high stress concentration around the crack and on the interface, an elliptical disbond is assumed to exist around the crack. The crack is asymmetric with respect to the stiffener's locations as well as to the patch's center. The effect of thermal stresses in curing process is also considered. The fracture problem is solved by the displacement compatibility method, using the complex variable approach and the Fourier integral transform method.The problem is dealt with in two steps. First, starting with an uncracked, patched stiffened sheet, the stress at the prospective location of the crack is determined in a closed-form solution. The second step is to introduce a crack into the stiffened patched sheet. The multivalue of the analytical formulation is treated in detail to ensure proper implement in the computer. The results show that the effect of the stiffeners on the stress intensity factor is not significant for a crack fully covered by a patch.For the repairs by Boron/Epoxy patches, the difference in KI between the infinite sheet patch and the infinite strip model is only minor (less than 5 percent) in the absence of the curing thermal stresses and it becomes more pronounced when these stresses are taken into consideration. The stress intensity factor for a crack repaired by an infinite composite strip also can be estimated with a good or reasonable accuracy via a simplified analysis in which the patch is considered as an infinite strip in the first step and is treated as an infinite sheet in the second step of the solution procedure mentioned above.The latter simplified analysis is based on the approach originally proposed by Rose for a relatively simple repair configuration. For most cases, that approach seems to work well for the repair of a stiffened sheet by an infinite composite strip with the effects of thermal stresses and a disbond included. It should be emphasized that the present methodology can apply to the problem of a crack in a metallic stiffened sheet growing beyond the patch's boundary and also to the repairs by an infinite adhesively bonded composite strip parallel to the crack.  相似文献   

16.
南京长江第四大桥北接线滁河特大桥采用波形钢腹板预应力混凝土组合箱梁桥。该类型桥是一种高效、经济、施工简便的新型桥梁形式。该类型桥恰当地将钢和混凝土两种不同材料结合起来,提高了结构稳定性、强度及材料的使用效率等。该桥的施工可为同类型桥的施工提供参考。  相似文献   

17.
Carbon fibre reinforced polymer (CFRP) composite laminates have become popular for structural applications as they are lighter, stronger and tougher. But they are also susceptible to damage while in service. Damage in composite structures reduces its structural integrity and hence the service life. For improved service life, the damages need to be repaired so that structural integrity is restored. Adhesively bonded composite patch repair is one of the prominent technique used for restoring the structural integrity of the damaged part. Patch shape is one of the important parameter in composite repair performance and it needs to be investigated thoroughly. In the present work, a 3D finite element based study is carried out to investigate the influence of various patch shapes on repair efficiency. Damaged CFRP laminates are repaired by symmetrical patch adhesively bonded over the damaged area. The panel analyzed is of pure unidirectional and quasi-isotropic laminate sequences. The patch shapes considered are circle, rectangle, square, ellipse, octagon and oval. Stress concentration factor (SCF) is estimated before and after the repair to evaluate their efficiency. Also peel stress is considered for quantitative comparison. The SCF reduction and peel stress are compared for various patch shapes keeping constant patch volume. Stress based 3D-Hashin’s failure criterion is employed for predicting the strength at damage initiation along with failure modes in notched and repaired panel. Optimal patch shape is then brought-out based on higher repair efficiency. Finally, a genetic algorithm based approach in-conjunction with finite element analysis is used for the optimization of patch geometry and adhesive thickness in order to obtain higher repair performance.  相似文献   

18.
Integrity enhancement of damaged or design deficient structures through repairs is attracting considerable engineering attention. Bonded composite patch repairs to cracked metallic sheets offer various advantages over riveted doubler type, particularly for airframe applications. This paper first reviews the R&D activity in the area of structural repairs. It then approaches the problem of a composite patch repair to a cracked aluminium sheet with different finite element modelling strategies and compares their outcome. The efficient finite element modelling approach thus established is used to study the effect of patch material, patch size, patch symmetry and adhesive thickness on repair performance as the crack grows in the repair configuration.  相似文献   

19.
An extended finite element method (XFEM) is developed to study fracture parameters of cracked metal plates and tubes that are repaired on top of the crack with a composite patch. A MATLAB® stand‐alone code is prepared to model such structures with eight‐noded doubly curved shell elements in the XFEM framework. Crack trajectory studies are performed for a diagonally cracked panel under fatigue loading. Verification studies are investigated on different shell type structures such as a cracked spherical shell and cracked cylindrical pipe with different crack orientations. The effects of using patch repairs with different fibre orientations on the reduction of stress intensity factors (SIFs) is also studied which can be useful for design purposes. XFEM is selected as any crack geometry can be embedded in the finite element mesh configuration with no need to coincide the crack geometry with meshed elements and so re‐meshing with fine mesh generation is not needed in the current method.  相似文献   

20.
In this study, the adhesive damage in bonded composite repair of aircraft structures is analyzed using a three dimensional finite element method. Four different patch shapes were chosen to analyze the adhesive damage: rectangular, trapezoidal, circular and elliptical. The modified damage zone theory was implemented in the FE code to evaluate the adhesive damage. The obtained results show that the rectangular shape is beneficial for the repair durability but it presents a disadvantage for the repair efficiency. The elliptical patch is found the optimal whereas the trapezoidal patch represents the worst shape among the four types analyzed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号