首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
逆反应烧结制备铝电解槽用氮化硅-碳化硅复合材料   总被引:3,自引:0,他引:3  
采用常规的反应烧结工艺制作铝电解槽侧壁材料用Si3N4/SiC时存在不足,为此,提出应用逆反应烧结工艺进行生产性试验的设想。在制备Si3N4/SiC复合材料时,常规反应烧结是以Si和SiC为原料经氮化烧结;逆反应烧结是以Si3N4和SiC为原料,首先使Si3N4反向反应生成活性氧化物后进行烧结。结果表明:该工艺特点是新生的Si2N2O或SiO2进行活性烧结;制品具有良好的物理和化学性能。制品结构紧密,新生氧化物或亚氧化物紧密地充填在Si3N4和SiC颗粒间界,新工艺制备的砖的抗冰晶石熔体侵蚀的性能优于常规工艺烧成砖,是铝电解槽侧壁的良好材料。  相似文献   

2.
黎军 《佛山陶瓷》2004,14(10):7-8
摘要在用反应烧结法制备Si3N4结合SiC复合材料时,如在反应前对SiC原料进行高温表面处理,可使SiC颗粒表面生成一层SiO2氧化层,该氧化层在高温、氮气气氛中会生成Si3N4颗粒或纤维,从而有效连接各SiC颗粒。  相似文献   

3.
非氧化物复合耐火材料的热力学性能   总被引:3,自引:0,他引:3  
为了在耐火材料中能动地应用非氧化物,系统了解非氧化物的热力学性质是非常必要的。为此,首分析了非氧化物在氧化气氛下的不稳定性及顺序,并就如何转变这个不利的性质,以实现在氧化气氛下烧结非氧化物复合材料而提出了“逆反应烧结”工艺。在深入研究Si、Al系氮化物的氧化机理后发现,当氧分压低于“转换氧分压”时,可显著生成其气态的亚氧化物。亚氧化物可以在邻近表面层沉积,形成致密层。致密层的形成使材料具有“自阻碍氧化”的性能。Si、Al的加入可增加亚氧化物的含量,从而加厚、加宽致密层,使材料的抗氧化和抗侵蚀能力得到提高。文中详述了Si3N4 -Al2O3、Si3N4 -MgO和Si3N4 -SiC三个体系的研究情况。结果表明:逆反应烧结工艺可制备出性能良好的复合物;Si、Al除可促进烧结外,还能提高致密层的密度和宽度。  相似文献   

4.
甄强  张大海  李文超 《耐火材料》2006,40(4):241-245
以微米级αSi3N4、SiO2、Al2O3和hBN为原料,通过反应烧结法合成了O’SiAlON-BN复合材料(Si2-zAlzO1 zN2-z的z=0.3)。首先在n(SiO2)/n(αSi3N4)=1的理论配比,1700℃保温2h的条件下对比研究了Y2O3 TiO2和Y2O3 B2O3两种混合烧结助剂对该复合材料的助烧效果。结果表明:Y2O3 TiO2作为烧结助剂比Y2O3 B2O3有更好的促进烧结作用,且复合材料的相对密度随着BN(分别为10%,20%和30%)的增加而降低;XRD分析发现,αSi3N4、SiO2原料在理论配比的情况下,会导致βSi3N4相剩余,为了得到O’SiAlON和BN相含量高的复合材料,需要加入过量的SiO2。根据此研究结果,在以Y2O3 TiO2作烧结剂,BN加入量为10%的条件下,通过4因素3水平(因素水平如下:A———n(SiO2)/n(αSi3N4),取1.05、1.1、1.2;B———烧结助剂加入量,取2%、4%、6%;C———烧成温度,取1600℃、1650℃、1700℃;D———保温时间,取1h、2h、3h)的正交试验确定了影响O’SiAlON-BN复合材料烧结性能的主要因素依次为烧成温度、保温时间、烧结助剂加入量、n(SiO2)/n(αSi3N4),合成的复合材料相对密度最高的工艺参数组合为A3B3C3D3;利用统计模式识别方法对合成O’SiAlON-BN复合材料的工艺条件参数进行了优化,得到的优化区为:Y>1024X2-230.400X 11.088(其中,X=0.9999A-0.0006C-0.0163D,Y=0.0163A 0.0009B-0.0014C 0.9999D),在此优化区内,复合材料中全部为O’SiAlON和BN相,无残留βSi3N4相。  相似文献   

5.
《炭黑工业》2005,(4):26
利用α-Si3N4、无定形碳(炭黑)和Y2O3组成的混合物,通过对Si3N4基质微粒表面上的SiO2进行碳热还原反应,或在原料基质中加入该混合物,制备了SiC/Si3N4微/纳米复合材料。进行特殊的热处理后,CO气体(碳热还原反应产物)从材料中排出,材料残余孔隙度降至2%以下。在SiC和Si3N4界面上,存在包含无定形富氧层的粒间和粒内SiC内含物,它是由单体碳和熔融二氧化硅反应而生成的。反应要消耗晶界相中的二氧化硅。晶界化学性质的改变对本纳米级复合材料的室温性能和高温性能都有影响。  相似文献   

6.
反应烧结氮化硅-碳化硅复合材料的氮化机理   总被引:1,自引:0,他引:1  
为分析反应烧结氮化硅结合碳化硅(Si3N4-SiC)材料中微观结构和氮化硅分布不均匀的原因,对在隔焰燃气氮化梭式窑中应用反应烧结氮化方法制备的氮化硅结合碳化硅复合材料进行结构研究和热力学分析。结果表明:材料中的氮化硅以纤维状和柱状两种形状存在。Si的氮化机理为:Si首先被氧化成气态SiO,降低了体系的氧分压,当氧分压足够低时,Si与N2直接反应形成柱状Si3N4,气态SiO亦可与N2反应生成氮化硅,这是一个气-气反应,故生成的Si3N4为纤维状。氮化反应前SiO主要分布于材料孔隙和表面,因而生成的氮化硅分布不均匀,导致了反应烧结Si3N4-SiC材料结构的不均匀。  相似文献   

7.
利用XRD、SEM和EDAX对在梭式氮化窑中使用1年后的反应烧结Si3N4-SiC匣钵砖内外侧进行了分析。结果表明:在匣钵外侧(氧化气氛),匣钵砖表面12 mm厚的区域呈完全氧化状态,主要氧化产物是SiO2;紧随其后的12~20 mm区域呈部分氧化状态,氧化产物主要为Si2N2O及少量SiO2;20 mm以后区域无明显氧化特征。在匣钵内侧(氮气气氛),匣钵砖表面出现了约0.2 mm厚的氧化层,主要氧化产物是SiO2,该SiO2可能是由气态SiO氧化形成的,而气态SiO主要来自SiC的氧化及氮化过程中形成的气态SiO;从显微结构可以看出,SiC颗粒表面氧化明显。  相似文献   

8.
采用高温包渗技术在炭/炭复合材料表面制备了SiC/Mo(Six,Al1-x)2复合涂层,采用两步反应法研究了复合涂层的生成机理。发现复合涂层是由Si、Al2O3、SiC、MoSi2原始粉末材料与基体炭材料经过复杂化学反应生成的SiC、Mo(SixAl1-x)2以及微量Mo4.8Si3C0.6固溶体组成。在较低温度下(〈1750℃),单质硅与基体碳的液-固相反应,经过2小时后可以在炭/炭复合材料表面和内部孔隙表面生成致密的SiC过渡涂层;在较高温度下(≤2000℃),SiC、Al2O3和MoSi2间的反应较为复杂,其主要过程为SiC与Al2O3间生成液体硅、液体铝和气态SiO、Al2O的多相反应,该反应生成的液体铝能够与MoSi2颗粒发生置换反应,生成熔点降低的Mo(Six,Al1-x)2转移涂层;同时,生成的液体硅与CO反应生成晶须状β—SiC,并与Mo(Six,Al1-x)2形成增强型复合涂层。本文还研究了过量单质Si和SiC对Mo(Six,Al1-x)2的还原反应,化学反应推论与实验结果相吻合。以新提出的涂层生成机理为指导,以粉末原料质量组成为Si10%,Al2O3 10%,SiC54%和MoSi226%时所制得了致密并且无粘结的复合涂层材料,并研究了封孔处理后复合材料的抗氧化性能。  相似文献   

9.
SiO_2-C-N_2-O_2系统合成SiC反应机理的研究   总被引:1,自引:0,他引:1  
在实验室使用工业原料石英砂和无烟煤 ,于 135 0 ,14 5 0 ,15 5 0℃合成了 β-SiC。通过X射线衍射法并结合热力学理论计算 ,研究温度在 160 0℃以下SiO2 -C -N2 -O2 系统的主要化学反应过程。认为该系统合成SiC的反应机理是 :反应过程主要分 3个阶段 ,反应初期以气相反应为主 ,主要反应式为SiO 2C =SiC CO ;反应中、后期以固相反应为主 ,主要反应式为SiO2 3C =SiC 2CO ,其反应中间过程为 :Si2 N2 O O2 =SiO2 SiO N2 和 3SiO 3C 2N2 =Si3N4 3CO。  相似文献   

10.
采用模压成型法制备纳米Si3N4或SiC与纳米Al2O3混合填充的聚四氟乙烯(PTFE)复合材料,研究不同质量分数的纳米Si3N4或SiC与5%纳米Al2O3混合填充对PTFE复合材料力学与耐磨性能的影响,利用扫描电子显微镜(SEM)观察复合材料拉伸断面的微观结构,探讨其增强机理.结果表明:纳米SiN4或SiC与Al2O3混合填料均能使PTFE复合材料的硬度和耐磨性提高,且填充Si3N4/Al2O3的PTFE复合材料的硬度、拉伸性能、冲击强度和耐磨性均优于填充SiC/Al2O3的,其中5%Si3N4与Al2O3混合填充的PTFE复合材料有较好的综合性能.微观分析表明:Si3N4/Al2O3在PTFE基体中分散性较好,说明Si3N4与Al2O3具有较好的协同作用.  相似文献   

11.
化学激励燃烧合成Si3N4/SiC复合粉体的研究   总被引:4,自引:1,他引:4  
研究了利用聚四氟乙烯作活化剂时Si/C混合粉末在氮气中燃烧合成Si3N4/SiC复合粉体。结果表明:当聚四氟乙烯的加入量为10%(质量分数)时可有效激励Si-C弱放热反应,使之以燃烧合成方式生成Si3N4/SiC复相粉。在埋粉条件下Si/C/SiC混合粉末也可以实现燃烧合成Si3N4/SiC复相粉。氮气参与反应时可进一步提高燃烧反应温度,并且首先以气相-晶体生长机制生成Si3N4,然后在高温贫氮的反应前沿Si3N4分解,再与C反应生成SiC。在Si3N4/SiC复合粉中Si3N,形貌以晶须为主。综合X射线衍射分析、扫描电镜观察及原子力显微镜观察对实验结果进行了讨论,解释了Si3N4晶须的形成原理。  相似文献   

12.
刁斐  蒋明学  朱鸿志 《陶瓷》2011,(13):35-38
根据热力学原理对Si—C—N—H—O五元系统进行了平衡状态下的相稳定性计算,绘制了在1 073 K和1 223 K下的SiC、Si_3N_4、Si_2N_2O和SiO_24个稳定相的稳定性与N_2分压和H_2O分压的关系图,即优势区域图,分析了其凝聚相的稳定区域。同时结合SEM显微结构分析氢气还原炉中Si_3N_4/SiC和Sialon/SiC制品抗H_2O—H_2—N_2气氛的侵蚀性能。  相似文献   

13.
氮化硅加入量对镁质浇注料力学性能的影响   总被引:1,自引:0,他引:1  
以镁砂为主要原料,以硅灰为结合剂,研究了不同氮化硅加入量对镁质浇注料的常温物理性能和高温力学性能的影响,用X射线衍射仪、扫描电镜等对浇注料的物相和显微结构等进行了分析.结果表明:经110℃,24h烘干的浇注料的常温抗压和抗折强度随着氮化硅加入量的增加而降低;经1 200℃,3 h烧结后的浇注料的常温抗压和抗折强度随着氮化硅加入量的增加先升高后降低,并在氮化硅加入量为3%(质量分数,下同)时达到极值点;经高温(1 500℃,3 h)烧结后的浇注料的常温抗压和抗折强度随着氮化硅加入量的增加而降低;烘干后的浇注料的高温(1 400℃)抗折强度在氮化硅加入量为3%时达到最大.在加热过程中氮化硅的作用包括两方面:一方面能部分氧化成二氧化硅,进而形成纤维状的镁橄榄石,增大浇注料的强度;另一方面氮化硅保留下来妨碍烧结,导致浇注料的强度降低.  相似文献   

14.
Sialon/SiC复相材料研究进展   总被引:11,自引:0,他引:11  
根据相图,合成Sialon相的技术途径包括采用Si3N4粉末和其它反应添加物以无压或热压工艺高温合成,或以Si粉与其它金属及其氧化物为原料无压反应烧成而成,ialon粉末也可通过粘土类矿物的碳热还原反应来合成,但前两种技术作乱在原料及合成工艺上的高成本使其难于在耐火材料领域大规模开发应用,后一种工艺目前仅见到合成Sialon粉末的试验报道,本研究在对粘土类矿物合成Silaon粉末的研究基础上,由廉  相似文献   

15.
氮化硅在水和乙醇中的摩擦化学机理研究   总被引:7,自引:0,他引:7  
在往复试验机上考察了Si_3N_4在干摩,水和乙醇润滑条件下的摩擦磨损性能,用SEM,XRD和XPS研究了Si_3N_4在水和醇中的摩擦化学反应机理。结果表明,Si_3N_4的摩擦系数和磨损体积随润滑环境的不同有如下顺序:干摩擦>水润滑>乙醇润滑。Si_3N_4在水中的摩擦化学机理涉及两个方面,一是Si_3N_4与水直接反应生成SiO_2;二是Si_3N_4与溶于水中的氧反应生成无定形Si-O化合物。Si_3N_4在醇中的摩擦化学机理为:Si_3N_4先与乙醇反应生成SiO_2,部分SiO_2与乙醇进一步反应生成硅酯。  相似文献   

16.
高炉用Si3N4结合的SiC质耐火材料的氧化   总被引:6,自引:0,他引:6  
通过称重方法和表面显微结构的观察,较系统地研究了高炉用Si_3N_4结合的SiC质耐火材料在空气、水蒸汽和不同CO/CO_2比的混合气相中的氧化过程,探讨了该材料的氧化动力学。本文针对高炉冷却设备漏水情况而设计的水蒸汽氧化及其模拟高炉冶炼环境而设计的不同CO/CO_2比混合气相中的氧化实验结果,为研究高炉用Si_3N_4结合的SiC质耐火材料的蚀损过程提供了一定的理论依据。  相似文献   

17.
采用有机前驱体制备Si3N4/SiC纳米复相陶瓷   总被引:9,自引:0,他引:9  
顾培芷  樊启晟 《硅酸盐学报》1995,23(3):266-271,285
本研究采用有机前驱体为主要原料,通过热解及烧结制备了两类Si3N4/SiC纳米复相陶瓷,研究了这些材料的微结构特点,讨论了材料强化的机制及力学性能与显微结构的关系。  相似文献   

18.
ZrO2对热压Si3N4性能的影响   总被引:1,自引:0,他引:1  
岳振星  徐洁 《硅酸盐通报》1993,12(4):9-14,23
  相似文献   

19.
利用真空电弧等离子射流法制备出Si+SiO_2、Si+Si_3N_4超细纤维,分析了超微粒子的表面效应、等离子体烧结作用、反应气氛及温度场等对超微颗粒生长过程的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号