首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We derive upper bounds on the components of the distance distribution of duals of BCH codes. Roughly speaking, these bounds show that the distance distribution can be upper-bounded by the corresponding normal distribution. To derive the bounds we use the linear programming approach along with some estimates on the magnitude of Krawtchouk polynomials of fixed degree in a vicinity of q/2  相似文献   

2.
The trellis representation of nonlinear codes is studied from a new perspective. We introduce the new concept of entropy/length profile (ELP). This profile can be considered as an extension of the dimension/length profile (DLP) to nonlinear codes. This elaboration of the DLP, the entropy/length profiles, appears to be suitable to the analysis of nonlinear codes. Additionally and independently, we use well-known information-theoretic measures to derive novel bounds on the minimal covering of a bipartite graph by complete subgraphs. We use these bounds in conjunction with the ELP notion to derive both lower and upper bounds on the state complexity and branch complexity profiles of (nonlinear) block codes represented by any trellis diagram. We lay down no restrictions on the trellis structure, and we do not confine the scope of our results to proper or one-to-one trellises only. The basic lower bound on the state complexity profile implies that the state complexity at any given level cannot be smaller than the mutual information between the past and the future portions of the code at this level under a uniform distribution of the codewords. We also devise a different probabilistic model to prove that the minimum achievable state complexity over all possible trellises is not larger than the maximum value of the above mutual information over all possible probability distributions of the codewords. This approach is pursued further to derive similar bounds on the branch complexity profile. To the best of our knowledge, the proposed upper bounds are the only upper bounds that address nonlinear codes. The novel lower bounds are tighter than the existing bounds. The new quantities and bounds reduce to well-known results when applied to linear codes  相似文献   

3.
We derive upper bounds on the rate of low-density parity-check (LDPC) codes for which reliable communication is achievable. We first generalize Gallager's (1963) bound to a general binary-input symmetric-output channel. We then proceed to derive tighter bounds. We also derive upper bounds on the rate as a function of the minimum distance of the code. We consider both individual codes and ensembles of codes.  相似文献   

4.
Randomized linear network code for single source multicast was introduced and analyzed in Ho et al. (IEEE Transactions on Information Theory, October 2006) where the main results are upper bounds for the failure probability of the code. In this paper, these bounds are improved and tightness of the new bounds is studied by analyzing the limiting behavior of the failure probability as the field size goes to infinity. In the linear random coding setting for single source multicast, the minimum distance of the code defined in Zhang, (IEEE Transactions on Information Theory, January 2008) is a random variable taking nonnegative integer values that satisfy the inequality in the Singleton bound recently established in Yeung and Cai (Communications in Information and Systems, 2006) for network error correction codes. We derive a bound on the probability mass function of the minimum distance of the random linear network code based on our improved upper bounds for the failure probability. Codes having the highest possible minimum distance in the Singleton bound are called maximum distance separable (MDS). The bound on the field size required for the existence of MDS codes reported in Zhang, (IEEE Transactions on Information Theory, January 2008) and Matsumoto (arXiv:cs.IT/0610121, Oct. 2006) suggests that such codes exist only when field size is large. Define the degradation of a code as the difference between the highest possible minimum distance in the Singleton bound and the actual minimum distance of the code. The bound for the probability mass function of the minimum distance leads to a bound on the field size required for the existence of network error correction codes with a given maximum degradation. The result shows that allowing minor degradation reduces the field size required dramatically.  相似文献   

5.
We consider the problem of bounding the distance distribution for unrestricted block codes with known distance and/or dual distance. Applying the polynomial method, we provide a general framework for previously known results. We derive several upper and lower bounds both for finite length and for sequences of codes of growing length. Asymptotic results in the paper improve previously known estimates. In particular, we prove the best known bounds on the binomiality range of the distance spectrum of codes with a known dual distance  相似文献   

6.
We derive new upper bounds on the error exponents for the maximum-likelihood decoding and error detecting in the binary symmetric channels. This is an improvement on the best earlier known bounds by Shannon-Gallager-Berlekamp (1967) and McEliece-Omura (1977). For the probability of undetected error the new bounds are better than the bounds by Levenshtein (1978, 1989) and the bound by Abdel-Ghaffar (see ibid., vol.43, p.1489-502, 1997). Moreover, we further extend the range of rates where the undetected error exponent is known to be exact. The new bounds are based on an analysis of possible distance distributions of the codes along with some inequalities relating the distance distributions to the error probabilities  相似文献   

7.
We derive new asymptotic upper bounds on the generalized weights of a binary linear code of a given size. We also prove some asymptotic results on the distance distribution of binary codes  相似文献   

8.
By deriving bounds on character sums of Boolean functions and by using the characterizations, due to Kasami , of those elements of the Reed-Muller codes whose Hamming weights are smaller than twice and a half the minimum distance, we derive an improved upper bound on the covering radius of the Reed-Muller code of order 2, and we deduce improved upper bounds on the covering radii of the Reed-Muller codes of higher orders  相似文献   

9.
We study a combinatorial invariant of codes which counts the number of ordered pairs of codewords in all subcodes of restricted support in a code. This invariant can be expressed as a linear form of the components of the distance distribution of the code with binomial numbers as coefficients. For this reason we call it a binomial moment of the distance distribution. Binomial moments appear in the proof of the MacWilliams (1963) identities and in many other problems of combinatorial coding theory. We introduce a linear programming problem for bounding these linear forms from below. It turns out that some known codes (1-error-correcting perfect codes, Golay codes, Nordstrom-Robinson code, etc.) yield optimal solutions of this problem, i.e., have minimal possible binomial moments of the distance distribution. We derive several general feasible solutions of this problem, which give lower bounds on the binomial moments of codes with given parameters, and derive the corresponding asymptotic bounds. Applications of these bounds include new lower bounds on the probability of undetected error for binary codes used over the binary-symmetric channel with crossover probability p and optimality of many codes for error detection. Asymptotic analysis of the bounds enables us to extend the range of code rates in which the upper bound on the undetected error exponent is tight  相似文献   

10.
In this paper, we investigate geometrical properties of the rank metric space and covering properties of rank metric codes. We first establish an analytical expression for the intersection of two balls with rank radii, and then derive an upper bound on the volume of the union of multiple balls with rank radii. Using these geometrical properties, we derive both upper and lower bounds on the minimum cardinality of a code with a given rank covering radius. The geometrical properties and bounds proposed in this paper are significant to the design, decoding, and performance analysis of rank metric codes.  相似文献   

11.
A logarithmic upper bound on the minimum distance of turbo codes   总被引:1,自引:0,他引:1  
We derive new upper bounds on the minimum distance, which turbo codes can maximally attain with the optimum interleaver of a given length. The new bounds grow approximately logarithmically with the interleaver length, and they are tighter than all previously derived bounds for medium-length and long interleavers. An extensive discussion highlights the impacts of the new bounds in the context of interleaver design and provides some new design guidelines.  相似文献   

12.
This correspondence studies the performance of the iterative decoding of low-density parity-check (LDPC) code ensembles that have linear typical minimum distance and stopping set size. We first obtain a lower bound on the achievable rates of these ensembles over memoryless binary-input output-symmetric channels. We improve this bound for the binary erasure channel. We also introduce a method to construct the codes meeting the lower bound for the binary erasure channel. Then, we give upper bounds on the rate of LDPC codes with linear minimum distance when their right degree distribution is fixed. We compare these bounds to the previously derived upper bounds on the rate when there is no restriction on the code ensemble.  相似文献   

13.
We consider convolutional and block encoding schemes which are variations of woven codes with outer warp. We propose methods to evaluate the distance characteristics of the considered codes on the basis of the active distances of the component codes. With this analytical bounding technique, we derived lower bounds on the minimum (or free) distance of woven convolutional codes, woven block codes, serially concatenated codes, and woven turbo codes. Next, we show that the lower bound on the minimum distance can be improved if we use designed interleaving with unique permutation functions in each row of the warp of the woven encoder. Finally, with the help of simulations, we get upper bounds on the minimum distance for some particular codes and then investigate their performance in the Gaussian channel. Throughout this paper, we compare all considered encoding schemes by means of examples, which illustrate their distance properties  相似文献   

14.
We derive bounds for optimal rate allocation between source and channel coding for linear channel codes that meet the Gilbert-Varshamov or Tsfasman-Vladut-Zink (1984) bounds. Formulas giving the high resolution vector quantizer distortion of these systems are also derived. In addition, we give bounds on how far below the channel capacity the transmission rate should be for a given delay constraint. The bounds obtained depend on the relationship between channel code rate and relative minimum distance guaranteed by the Gilbert-Varshamov bound, and do not require sophisticated decoding beyond the error correction limit. We demonstrate that the end-to-end mean-squared error decays exponentially fast as a function of the overall transmission rate, which need not be the case for certain well-known structured codes such as Hamming codes  相似文献   

15.
We define a class of easily implementable suboptimum codes for runlengths of binary facsimile images which we call linear runlength codes because the number of bits we transmit for each run is approximately proportional to its length. Then, assuming the runlengths are geometrically distributed, we derive bounds on the minimum bit rate achievable by linear runlength codes of a given size.  相似文献   

16.
Upper bounds are derived for codes in Stiefel and Grassmann manifolds with given minimum chordal distance. They stem from upper bounds for codes in the product of unit spheres and projective spaces. The new bounds are asymptotically better than the previously known ones.   相似文献   

17.
Tietaivainen (1991) derived an upper bound on the covering radius of codes as a function of the dual distance. This was generalized to the minimum distance, and to Q-polynomial association schemes by Levenshtein and Fazekas. Both proofs use a linear programming approach. In particular, Levenshtein and Fazekas (1990) use linear programming bounds for codes and designs. In this article, proofs relying solely on the orthogonality relations of Krawtchouk (1929), Lloyd, and, more generally, Krawtchouk-adjacent orthogonal polynomials are derived. As a by-product upper bounds on the minimum distance of formally self-dual binary codes are derived  相似文献   

18.
Until the analysis of repeat accumulate codes by Divsalar et al. (1998), few people would have guessed that simple rate-1 codes could play a crucial role in the construction of "good" binary codes. We construct "good" binary linear block codes at any rate r<1 by serially concatenating an arbitrary outer code of rate r with a large number of rate-1 inner codes through uniform random interleavers. We derive the average output weight enumerator (WE) for this ensemble in the limit as the number of inner codes goes to infinity. Using a probabilistic upper bound on the minimum distance, we prove that long codes from this ensemble will achieve the Gilbert-Varshamov (1952) bound with high probability. Numerical evaluation of the minimum distance shows that the asymptotic bound can be achieved with a small number of inner codes. In essence, this construction produces codes with good distance properties which are also compatible with iterative "turbo" style decoding. For selected codes, we also present bounds on the probability of maximum-likelihood decoding (MLD) error and simulation results for the probability of iterative decoding error.  相似文献   

19.
We show how asymptotic estimates of powers of polynomials with nonnegative coefficients can be used in the analysis of low-density parity-check (LDPC) codes. In particular, we show how these estimates can be used to derive the asymptotic distance spectrum of both regular and irregular LDPC code ensembles. We then consider the binary erasure channel (BEC). Using these estimates we derive lower bounds on the error exponent, under iterative decoding, of LDPC codes used over the BEC. Both regular and irregular code structures are considered. These bounds are compared to the corresponding bounds when optimal (maximum-likelihood (ML)) decoding is applied.  相似文献   

20.
New lower bounds are presented on the second moment of the distance distribution of binary codes, in terms of the first moment of the distribution. These bounds are used to obtain upper bounds on the size of codes whose maximum distance is close to their minimum distance. It is then demonstrated how such bounds can be applied to bound from below the smallest attainable ratio between the maximum distance and the minimum distance of codes. Finally, counterparts of the bounds are derived for the special case of constant-weight codes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号