首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
石尔  易苹  赵斌  汪琼  张成云 《化工进展》2023,(12):6171-6179
微纳复合多孔结构对相变换热的强化是能源化工领域的重要主题。基于气液协同输运的概念,通过飞秒激光正交扫描加工,在硅片上生成二维嵌套的纳米孔链双层复合多孔结构,实验研究了其对HFE-7100过冷池沸腾传热特性的影响。实验结果表明,相比于光滑表面,多孔表面在35K过冷池沸腾条件下的起始过热度从16.7K下降到12.3K,降低26.3%,最大临界热通量提高128.7%。同时利用高速摄影观察气泡行为来研究强化沸腾传热机理。研究发现,双层多孔结构表面和内部形成的大量连通孔穴大幅度增加了有效成核位点,纳米孔和双层连通结构提供垂直和水平方向的液体补充通道,在高热通量下气泡尺寸更小,脱离更快。有效汽化核心密度增加以及气液自适应协同输运增强了多孔网络中的微液膜蒸发和微对流作用,从而有效提升沸腾换热能力和临界热通量。  相似文献   

2.
利用实验手段对梯度金属泡沫池沸腾过程中气泡脱离行为特性进行了探究。实验工质为去离子水、浓度分别为400 mg·L~(-1)和800 mg·L~(-1)的正庚醇溶液。梯度金属泡沫材质为铜和镍,铜泡沫层和镍泡沫层厚度均为4 mm,孔密度分别为40 PPI和10 PPI。实验结果表明:添加正庚醇会使池沸腾气泡脱离直径变小,数目减少,但其浓度变化影响不明显;在热通量6.6×10~4 W·m~(-2)沸腾时,观察到气泡脱离金属泡沫骨架阻碍两种常见运动形式:气泡破裂和整体滑移;当热通量增加到1.0×10~5 W·m~(-2)时,相邻的两个气泡在梯度金属泡沫内合并成一个大气泡脱离金属泡沫。  相似文献   

3.
陈洪涛  梁宏宝  莫瑞  朱砂  杨智平 《化工学报》2015,66(12):4823-4828
实验室内建立可视化沸腾容器,用高速摄像机记录单个气泡的生成、成长、脱离、上升的过程,并建立相关数学模型,研究气泡行为与老化油暴沸之间的关系。研究表明,随着“驱动力”ΔTs(即过热度)逐渐增大,传热面上水开始汽化沸腾,形成油包蒸汽气泡,气泡的跃离时间随热通量的增加而缩短,而传热面上的汽化核心密度增加;“驱动力”继续增大,气泡的破灭速度低于生成速度时,形成气泡层,大量的气泡累积会使气泡层迅速扩增到整个容器空间,形成暴沸。  相似文献   

4.
黄瑞连  赵长颖  徐治国 《化工学报》2018,69(7):2890-2898
利用实验手段对梯度金属泡沫池沸腾过程中气泡脱离行为特性进行了探究。实验工质为去离子水、浓度分别为400 mg·L-1和800 mg·L-1的正庚醇溶液。梯度金属泡沫材质为铜和镍,铜泡沫层和镍泡沫层厚度均为4 mm,孔密度分别为40 PPI和10 PPI。实验结果表明:添加正庚醇会使池沸腾气泡脱离直径变小,数目减少,但其浓度变化影响不明显;在热通量6.6×104 W·m-2沸腾时,观察到气泡脱离金属泡沫骨架阻碍两种常见运动形式:气泡破裂和整体滑移;当热通量增加到1.0×105 W·m-2时,相邻的两个气泡在梯度金属泡沫内合并成一个大气泡脱离金属泡沫。  相似文献   

5.
潘丰  王超杰  母立众  贺缨 《化工学报》2021,72(5):2514-2527
微液层蒸发是沸腾过程中重要的换热机理。本文旨在通过单个气泡池沸腾实验中测得的气泡动态参数探究孤立气泡生长过程中加热表面的换热机理。首先通过沸腾池和加热表面的严格设计实现了单个气泡沸腾。进一步通过对孤立气泡生长时序图像的处理,得到了气泡在一个生长周期内气泡直径、纵横比以及气泡根部基圆半径的变化。对比发现,气泡生长速率与气泡根部基圆半径随时间的变化呈现显著正相关,而与大液层区域的变化相关程度较低,这表明微液层蒸发直接影响气泡体积变化,在孤立气泡沸腾过程中起主导作用。在此基础上进一步建立了加热表面换热过程的数值模型,基于实验中测得的气泡动态参数对气泡底层的微液层厚度进行了预测;通过多次迭代计算并匹配气泡生长速率和加热棒的温度发现,当表面过热度为4.82 K时,气泡底层微液层厚度约为3.43 μm,与相关文献中的微液层厚度测量值基本一致,进一步证实了微液层蒸发在孤立气泡沸腾换热过程中的重要性。本研究揭示了孤立气泡池沸腾过程中近壁面处的换热机制,为进一步的孤立气泡沸腾传热过程数值模拟奠定了理论基础。  相似文献   

6.
刁彦华  赵耀华  王秋良 《化学工程》2006,34(8):13-16,27
基于单组分工质池沸腾动态微液层预测模型,提出了预测双组分混合工质沸腾换热系数的理论模型。该模型认为沸腾换热的机理主要是由于在气泡的周期生长过程中所形成微液层的蒸发。模型中考虑了气泡生长过程中液体传质对传热的影响,给出了气泡生长过程中传热面上气液固接触的动态构造。利用本模型所得预测结果与实验结果能够较好地符合。  相似文献   

7.
为了从纳米尺度了解表面结构和润湿性对池沸腾液体与固体壁面的传热性能,本文采用分子动力学方法研究了超亲水至超疏水不同润湿性的液体氩在光滑表面和含凹、凸半球纳米结构表面的沸腾传热过程,分析了三种表面上液氩在受热过程的形态、温度、热流密度等相关参数的变化情况。结果表明,液氩层沸腾过程大致可分为液氩层吸附于固体表面和液氩层从壁面脱离两个加热阶段,当液氩层吸附于固体表面时,温度升高、热流密度及气态氩原子产生速度均大于液氩层脱离壁面时的情况,在这两个阶段亲水表面上氩原子温度变化有明显的拐点,而疏水表面在两个阶段加热过程相差不大。亲水表面上的微结构能吸附更多液氩原子,促进了气泡产生及加速温度、热流密度的变化,而在疏水及超疏水微结构表面,微纳结构与液氩间的气膜层促进了气泡产生,计算结果为池沸腾传热及微结构选择提供了理论依据。  相似文献   

8.
孙雄康  李强 《化工学报》2022,73(3):1127-1135
采用固相烧结技术制备了均匀多孔层、复合16芯和复合32芯三种多孔结构,并且建立了池沸腾传热测试系统来研究不同芯数量、粒径与结构高度对多孔结构沸腾传热性能的影响。实验结果表明,在测试范围内复合层高1 mm的多孔复合32芯结构传热性能较强,临界热通量(CHF)最高为386 W/cm2,传热系数最高达到9.5 W/(cm2·K)。同时利用高速摄影观察气泡行为来研究强化沸腾传热机理。可视化数据表明,相比于光滑表面,在高热通量下多孔复合表面上气泡周期更短,脱离更快,气泡的离开带来了更多的液体补充,进而不断提升传热性能,获得更高的CHF值。  相似文献   

9.
研究了浸没在去离子水中不同孔隙率和不同纤维直径的烧结紫铜纤维毡水平表面的池沸腾换热性能,采用高速摄像机对试件表面气泡的生长和脱离过程进行可视化研究。结果表明:纤维直径相同时,沸腾表面气泡的脱离直径随着孔隙率的增加而降低;对于不同直径的纤维毡试件,沸腾传热系数随孔隙率的变化规律不同,孔隙率对沸腾换热的影响是汽化核心密度和中流量孔径共同作用的结果。  相似文献   

10.
为了研究气泡微细化沸腾(MEB)时的气泡动力学行为,利用高速摄像仪(Fastcam SA5)观察15~60 K过冷度范围内,直径10 mm加热面上的沸腾过程。通过引入等效半径,分析核态沸腾、膜态沸腾和MEB区域的气泡行为特征。结果表明:MEB发生时的气泡行为,既不同于核态沸腾,也与膜态沸腾明显不同。在MEB区域,加热面上通常会形成一个大的、不规则气泡,但并不会脱离加热面,而是迅速破碎凝结;而且气泡生命周期相对较小,体积变化速率更快。量纲1分析发现,在MEB区域,随着壁面过热度和热通量的升高,气泡凝缩破裂过程受惯性控制影响程度逐渐增加。  相似文献   

11.
A digital photographic study of pool boiling with binary mixture Rll(CC13)-Rll3(CCl3CF3) was performed on a horizontal transparent heater at pressure of 0.1MPa. A high speed digital camera was applied to record the bubble behaviors in boiling process. Strong effects of composition on bubble departure diameter, deparatre time, nucleation density were observed, which was attributed to the nature of the activation of the boiling surface and mass diffusion effects. The bubble departure diameter, departure period and nucleation density as functions of composition for binary mixtures R 11-R 113 were presented respectively. From the video images, it can be concluded that evaporation of microlayer is very important to the growth of bubble. It is also observed that there is not any liquid recruited into the microlayer below the bubble.  相似文献   

12.
Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement.  相似文献   

13.
陈宏霞  孙源  肖红洋  刘霖 《化工进展》2019,38(11):4845-4855
利用计算流体力学方法(computational fluid dynamics, CFD)对三维均匀微柱结构表面单气泡核态沸腾过程进行数值模拟研究,使用VOF模型(volume of fluid model, VOF)在界面网格追踪加密的条件下精确捕捉气液界面,同时考虑气液界面和微层处的蒸发,准确获得三维微柱表面单气泡核态沸腾过程中的气泡动力学、温度演化和蒸发换热性能。结果表明,气泡脱离时间为1.79ms,体现了微柱结构促进气泡脱离的强化作用。通过气泡横向和纵向直径的变化准确表征了气泡在脱离过程中的变形过程,并模拟得到该过程流场热边界层及壁面温度的演变规律。同时,通过微层蒸发和气液交界面蒸发功率随时间变化的监测,指出气泡生长过程微层蒸发量占总蒸发量的52%;t=0.95ms后微层蒸发消失,气液界面蒸发维持相对稳定值(0.1~0.2W)直至气泡脱离。蒸发换热特性耦合气泡与壁面接触情况随时间的变化,揭示了单气泡核态沸腾过程蒸发换热机理的阶段性特征及时间分区,为在核态沸腾单个气泡生长脱离过程中更准确划分时间阶段、建立沸腾换热模型奠定基础,提供了参考。  相似文献   

14.
毛兰  周文斌  胡学功  何雨  张桂英  单龙 《化工进展》2019,38(9):4164-4173
利用氧化石墨烯(GO)纳米片沸腾自组装法(self-assembly)制备出GO纳米表面,以蒸馏水为液体工质,对常压下GO纳米表面和光滑铜平面的饱和池沸腾换热特性进行了对比实验研究,并用高速摄像机拍摄了汽泡的动态行为。结果表明,GO纳米表面降低了换热壁面的过热度,其临界热流密度(CHF)和换热系数(HTC)分别达到了208W/cm2和7.25W/(cm2?K),较光滑铜平面分别提高了66.4%和86.9%。分析认为,是铜基底表面沉积的润湿性优异的高导热二维GO层状结构促使了CHF提高。汽泡可视化观察发现,相比于光滑铜平面,较低热流密度时,相同热流下GO纳米表面上汽泡脱离直径较小,脱离频率较高,汽化核心增多;较高热流密度时,光滑铜平面汽泡合并现象更严重,即GO纳米表面能延缓导致CHF产生的表面蒸汽膜的出现。  相似文献   

15.
赵楠  张旺  杨立新 《化工学报》2016,67(Z1):47-56
以去离子水为实验工质,在窄缝宽度δ=3、4 mm,质量流速G=143、300 kg·m-2·s-1,主流过冷度ΔTsub=17、25℃,热通量q=1~20 W·cm-2的参数范围内,对常压下竖直窄缝通道内向上流动过冷沸腾的换热规律进行了实验研究。对不同宽度窄缝通道内的同一区域过冷沸腾气泡演变过程进行了可视化实验分析,发现窄缝宽度因素对过冷流动沸腾的流动换热特性和壁面核化特性影响显著,其中包括沸腾起始点ONB,压降ΔP,传热系数h,汽化核心密度Na,气泡脱离直径Dd,气泡脱离频率f等。  相似文献   

16.
沸腾换热是一种高效的换热方式,为研究除湿溶液再生的沸腾换热过程,搭建真空再生沸腾特性测试实验台,对水和质量分数分别为30%、32%、34%的LiCl溶液进行实验研究,得到溶液浓度对溶液沸腾热流密度及沸腾表面传热系数的影响。结果表明,浓度升高,表面张力增大,汽化核心数减少;黏度增大,气泡脱离困难,使扰动量减少,溶液的热流密度降低;随着浓度的增大,表面张力增大,气泡生成及脱离阻力增大,对LiCl溶液的扰动程度降低,使溶液的沸腾传热系数减小。温差增大使壁面过热度增大,气泡生成增多,加强对溶液的扰动,使溶液的热流密度及沸腾传热系数增大。  相似文献   

17.
何照荣  范志卿  王大成 《化工进展》2018,37(12):4533-4542
通过电火花成型加工技术在铜基换热表面制备微纳结构改性表面,以自制换热表面性能测试装置进行改性表面的池沸腾换热性能实验。改性表面随加工电流改变而具有不同粗糙度、孔隙率和粗糙度因子,表面接触角范围在117.4°~133.5°。实验结果表明,改性表面的微纳结构提高换热面的池沸腾换热效果,临界热流密度较光滑铜表面提高了26%~87.8%,最大传热系数提高了48.1%~213%。改性表面的传热系数随着粗糙度增大而减小,而临界热流密度则是先增大后减小;孔隙率的增大使得改性表面的传热系数也随之增大,临界热流密度则是随着孔隙率的增大而先增大后减小;临界热流密度随着粗糙度因子的增大而降低,传热系数则是先增大后降低。粗糙度对沸腾换热的强化效果较小,孔隙率和粗糙度因子是强化池沸腾换热的关键,孔隙率和粗糙度因子分别影响了气泡核化密度和实际接触面积,提高了气泡脱离频率,带走更多的热量,但两者间存在互相制约的平衡关系。  相似文献   

18.
匡以武  孙礼杰  王文  耑锐  张亮 《化工学报》2021,72(Z1):184-193
基于双流体模型,建立了液氢管内流动沸腾的数值模型,在液体Reynolds数67000~660000、壁面热通量16300~317800 W/m2、饱和温度22~29 K、入口过冷度0~8 K的范围内,对管径5.95和6.35 mm的圆管内液氢流动沸腾开展了数值模拟研究,并与试验结果进行了对比。对比显示,液氢流动沸腾传热系数的模拟结果与试验数据的平均误差(MAE)为7.79%,94%的模拟数据都在±20%误差带范围内。  相似文献   

19.
基于多孔或微结构表面润湿性改性的核态沸腾强化传热,已得到广泛研究。利用CFD-VOF数值模拟方法,针对单晶硅微柱表面单气泡的生长及脱离过程,进行表面浸润性分段调控,实现气泡沸腾换热的全程强化。分别调控初始接触角为48°、60°、90°和110°后,同一时刻 (t = 0.152 ms) 变接触角为20°,对比研究分段调控浸润性对气泡动力学过程与表面换热性能的影响。结果表明:疏水性可提高气泡生长速率,增强微柱表面对气泡的黏附力,促进气泡在微结构缝隙内的横向铺展;t = 0.150 ms时接触角为110° 表面上气泡与底面接触面积增加1.3倍,微层蒸发功率增加1.2倍。需要指出的是,毛细效应随颗粒粒径变化趋势受到多孔介质复杂孔隙结构特征的影响。在当前粒径范围内,认为其具有正相关关系,但在更大范围内的对应关系,还需要在未来进一步深入揭示。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号