首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel micro-porous layer (MPL) is designed to enhance the cold-start capability of a polymer electrolyte fuel cell (PEFC). The concept of designing an MPL is to expand the ice storage capacity of the electrode into the MPL region. We impose proton conduction capability and the oxygen reduction reaction (ORR) kinetic activity on the MPL via controlling the platinum (Pt) loading, ionomer fraction and weight ratio of Pt to the carbon support (wt%PtC) of the MPL. Therefore, the MPL is dual-functional, and can work as a typical MPL for normal PEFC operations and as a part of the cathode catalyst layer (CL) for cold-start operations. Three-dimensional (3-D) cold-start simulations are carried out by using a 3-D cold-start model developed in a previous study [1]. The detailed simulation results clearly suggest that the cold-start operational time can be extended significantly using a dual-function MPL, and the extended time is directly proportional to the pore volume of the MPL for ice storage. This study provides a new strategy to enhance the cold-start capability of a PEFC by properly designing and optimizing the MPL.  相似文献   

2.
During startup from subzero temperatures the water produced in a polymer electrolyte fuel cell (PEFC) forms ice/frost in the cathode catalyst layer (CL), blocking the oxygen transport and causing cell shutdown once all CL pores are plugged with ice. This paper describes an experimental study on the effects of operating and design parameters on PEFC cold-start capability. The amount of total product water in mg cm−2 during startup is used as an index to quantify the cold-start capability. The newly developed isothermal cold-start protocol is used to explore the basic physics of cold start, and the effects of purge methods prior to cold start, startup temperature and current density, and the membrane thickness are shown. The experimental data also confirm the current density effect predicted earlier by a multiphase model of PEFC cold start.  相似文献   

3.
4.
In this study, we investigated the effects of humidity and oxygen reduction on the degradation of the catalyst of a polymer electrolyte membrane fuel cell (PEMFC) in a voltage cycling test. To elucidate the effect of humidity on the voltage cycling corrosion of a carbon-supported Pt catalyst with 3 nm Pt particles, voltage cycling tests based on 10,000 cycles were conducted using 100% relative humidity (RH) hydrogen as anode gas and nitrogen of varying humidities as cathode gas. The degradation rate of an electrochemical surface area (ECSA) was almost 50% under 189% RH nitrogen atmosphere and the Pt average particle diameter after 10,000 cycles under these conditions was about 2.3 times that of a particle of fresh catalyst because of the agglomeration of Pt particles.The oxygen reduction reaction (ORR) that facilitated Pt catalyst agglomeration when oxygen was employed as the cathode gas also demonstrated that Pt agglomeration was prominent in higher concentrations of oxygen. The ECSA degradation figure in 100% RH oxygen was similar to that in 189% RH nitrogen. It was concluded that liquid water, which was dropped under a supersaturated condition or generated by ORR, accelerated Pt agglomeration. In this paper, we suggest that the Pt agglomeration degradation occurs in a flooding area in a cell plane.  相似文献   

5.
Cold start is a challenging and important issue that hinders the commercialization of polymer electrolyte membrane fuel cell (PEMFC). In this study, a three-dimensional multiphase model has been developed to simulate the cold start processes in a PEMFC. Numerical simulations have been conducted for a single PEMFC starting at various operating and initial conditions, which are cell voltages, initial water contents and distributions, anode inlet relative humidity (RH), surrounding heat transfer coefficients, and cell temperatures. It is found that the heating-up time can be significantly reduced by decreasing the cell voltage and effective purge is critical for PEMFC cold start. The largest heating source at high cell voltages is the activational heat, and it becomes the ohmic heat at low cell voltages. The water freezing in the membrane is not observed when the cell is producing current due to the heat generation and the slow water diffusion into the membrane at subzero temperatures, and it is only observed after the cold start is failed, further confirming the importance of purge. Humidification of the supplied hydrogen has negligible effect on the cold start performance since only small amounts of water vapour can be taken by the gas streams at subzero temperatures. The surrounding heat transfer coefficients have significant influence on the heating-up time, indicating the importance of cell insulation or heating. The rate of cell heating up is reduced when the startup temperature is lowered due to the more sluggish electrochemical reaction kinetics.  相似文献   

6.
Core–shell catalyst has been attracting attention as a low-Pt catalyst for PEFC cathode. However, its mass production method has not yet been established. In this paper, a novel method suitable for continuous production of low-platinum catalyst layer for PEFC is proposed. Catalyst layer of carbon-supported Pd@Pt core–shell catalyst (Pd@Pt/C) is fabricated by using Cu underpotential deposition (UPD) followed by surface-limited redox replacement (SLRR) directly to the porous catalyst layer made of Pd core (Pd/C). The distribution of Pt corresponded well with that of Pd throughout the catalyst layer, indicating that the core–shell reaction occurs in the entire catalyst layer. Pd@Pt/C shows 1.8 times higher mass activity than Pt/C, which is comparable to Pd@Pt/C prepared by conventional microgram-scale method.  相似文献   

7.
The flow velocity and pressure distribution of the three cathode flow fields are simulated in this study. Larger pressure drop and more rapid flow rate reduce residual water, resulting in minimal ice formation during the cold start process. The simulation results show that the single variable cross section serpentine flow field has the largest pressure drop and the most rapid flow rate.The evolution of the temperature and the segment current density characteristics of three different cathode flow fields during cold start process is studied by printed circuit board technology. The results show that the 2 to 1 serpentine flow field has the best cold start performance and the best current density uniformity when cold start at constant voltage mode above −5 °C. However, the single variable cross section serpentine flow field has the best performance when cold start temperature is below −5 °C. Based on these results, cold start at −30 °C can be realized in 97s by using hot antifreeze liquid.  相似文献   

8.
The direct three-dimensional reconstruction of a polymer electrolyte fuel cell cathode catalyst layer from focused ion beam/scanning electron microscope (FIB/SEM) images is presented. The carbon and pore distribution is shown and quantitatively analysed. A new catalyst layer sample (Fumapem-F950/HiSpec13100) is sliced with FIB and a series of SEM images is taken. The images are registered, segmented and a three-dimensional stack is reconstructed. The three-dimensional carbon and pore distribution is shown. Based on the reconstruction the pore size distribution is evaluated. The total porosity and the unconnected pores space is analysed. The fully segmented 2D images are provided as supplemental material to this paper for future analysis and modeling work.  相似文献   

9.
Cold start is critical to the commercialization of polymer electrolyte membrane fuel cell (PEMFC) for practical applications such as backup power and automotive applications. In this study, various numerically simulated PEMFC cold start processes are analyzed. The success of the cold start process depends on the competition between how fast the cell is heated up to the freezing point temperature and how fast ice is formed and built up in the pores of the cathode catalyst layer (CL) blocking oxygen transport to the reaction sites; the success of the cold start process thus depends on the product water (i) that is absorbed into the ionomer in the CL and membrane, (ii) that is taken away in vapour form by the gas flows (can be neglected), and (iii) that is frozen into ice in the CL pores. It is found that the membrane thickness and the ionomer volume fraction in the CL play pivotal roles in reducing the amount of ice formation. A thicker membrane leads to a larger water capacity but a slower water absorption process, and increasing the ionomer volume fraction in the CL enlarges the ionomer water capacity and enhances the membrane water absorption. Starting the cell under the potentiostatic condition is confirmed to be superior to the galvanostatic condition. Heating up the external surfaces and the inlet air enhances the temperature increment of the cell. However, the external heating methods have negligible improvement in reducing the amount of ice formation. Even though heating the inlet air is more effective in increasing the cell temperature than heating the outer surfaces, the heat capacity of the inlet air is low.  相似文献   

10.
The interface between the micro-porous layer (MPL) and the catalyst layer (CL) can have an impact on thermal, electrical and two-phase mass transport in a polymer electrolyte fuel cell (PEFC). However, there is scant information available regarding the true morphology of the MPL and CL surfaces. In this work, optical profilometry is used to characterize the MPL and CL surfaces at the sub-micron level scale to gain a better understanding of the surface morphology. Selected MPL and CL surfaces were sputtered with a thin layer of gold to enhance the surface reflectivity for improved data acquisition. The results show that, for the materials tested, the MPL surface has a relatively higher roughness than the CL surface, indicating the potential dominance of the MPL surface morphology on the local transport and interfacial contact across the MPL|CL interface. The level of roughness can be on the order of 10 μm peak height, which is significant in comparison to other length scales involved in transport, and can result in significant interfacial water storage capacity (approximately 6-18% of the total water content in a PEFC [37]) along this interface. Another surface characteristic that can have a profound influence on multi-phase transport is the existence of deep cracks along the MPL and CL surfaces. The cracks on MPL and CL surfaces are observed to differ significantly in terms of their orientation, size, shape, depth and density. The areal crack density of the CL tested is calculated to be 3.4 ± 0.2%, while the areal crack density of the MPL is found to vary from 2.8% to 8.9%. The results of this study can be useful to understand the true nature of the interfacial transport in PEFCs.  相似文献   

11.
The effect of the cathode catalyst layer's structure and composition on the overall performance of a polymer electrolyte membrane fuel cell (PEMFC) is investigated numerically. The starting point of the sub-grid scale catalyst layer model is the well-known flooded agglomerate concept. The proposed model addresses the effects of ionomer (Nafion) loading, catalyst (platinum) loading, platinum/carbon ratio, agglomerate size and cathode layer thickness. The sub-grid scale model is first validated against experimental data and previously published results, and then embedded within a two-dimensional validated computational fluid dynamics code that can predict the overall performance of the fuel cell. The integrated model is then used to explore a wide range of the compositional and structural parameter space, mentioned earlier. In each case, the model is able to correctly predict the trends observed by past experimental studies. It is found that the performance trends are often different at intermediate versus high current densities—the former being governed by agglomerate-scale (or local) losses, while the latter is governed by catalyst layer thickness-scale (or global) losses. The presence of an optimal performance with varying Nafion content in the cathode is more due to the local agglomerate-scale mass transport and conductivity losses in the polymer coating around the agglomerates than due to the amount of Nafion within the agglomerate. It is also found that platinum mass loading needs to be at a moderate level in order to optimize fuel cell performance, even if cost is to be disregarded.  相似文献   

12.
In a previous study, we proposed a dual-function microporous layer (MPL) to improve the cold-start capability of polymer electrolyte fuel cells (PEFCs). The conceptual MPL design is to use an ionomer-based binder with low Pt loading, thereby allowing the MPL to provide additional volume for ice storage during cold-start PEFC operations. Although the benefit of using a dual-function MPL was numerically elucidated in our previous study, the question regarding the use of this new MPL under normal PEFC operation remains to be addressed. In this paper, we extend our discussion to the effects of a dual-function MPL under subzero to normal operating temperatures. The three-dimensional (3D) cold-start PEFC model developed in our previous study is modified for transient PEFC simulations to consider a wide range of operating temperatures from −20 °C to 80 °C. Simulation results show a negligible performance drop at the normal PEFC temperature of 80 °C, because of the presence of the dual-function MPL in a PEFC membrane electrode assembly. In addition, water back flow from the cathode to anode is reduced on using the dual-function MPL, owing to the additional water uptake driven by its ionomer content. This study clearly demonstrates that this dual-function MPL technology may be applied to automotive PEFC stack development without sacrificing fabrication cost and cell performance during normal PEFC operations.  相似文献   

13.
In this work, a three-dimensional, steady-state, multi-agglomerate model of cathode catalyst layer in polymer electrolyte membrane (PEM) fuel cells has been developed to assess the activation polarization and the current densities in the cathode catalyst layer. A finite element technique is used for the numerical solution to the model developed. The cathode activation overpotentials, and the membrane and solid phase current densities are calculated for different operating conditions. Three different configurations of agglomerate arrangements are considered, an in-line and two staggered arrangements. All the three arrangements are simulated for typical operating conditions inside the PEM fuel cell in order to investigate the oxygen transport process through the cathode catalyst layer, and its impact on the activation polarization. A comprehensive validation with the well-established two-dimensional “axi-symmetric model” has been performed to validate the three-dimensional numerical model results. Present results show a lowest activation overpotential when the agglomerate arrangement is in-line. For more realistic scenarios, staggered arrangements, the activation overpotentials are higher due to the slower oxygen transport and lesser passage or void region available around the individual agglomerate. The present study elucidates that the cathode overpotential reduction is possible through the changing of agglomerate arrangements. Hence, the approaches to cathode overpotential reduction through the optimization of agglomerate arrangement will be helpful for the next generation fuel cell design.  相似文献   

14.
Using a two-phase polymer electrolyte fuel cell (PEFC) model, we numerically investigated the influence of metal foam porous properties and wettability on key species and current distributions within a PEFC. Three-dimensional simulations were conducted under practical low humidity inlet hydrogen and air gases, and numerical comparisons were made for different metal foam design variables. These simulations were conducted to elucidate the detailed operating characteristics of PEFCs using metal foams as a flow distributor, and the simulation results showed that two-phase transport and the resulting flooding behavior in a PEFC are influenced by both the metal foam porous properties and the porous properties of an adjacent layer (e.g., the gas diffusion layer). This paper offers basic directions to design metal foams for optimal water management of PEFCs.  相似文献   

15.
A two‐dimensional, multiphase, non‐isothermal numerical model was used to investigate the effect of the high performance catalyst layer (CL) design. Microstructure‐related parameters were studied on the basis of the agglomerate model assumption. A conventional CL design (uniform Pt/C composition, e.g., 40 wt%) was modified into two sub‐layers with two different Pt/C compositions (in this study, 40 and 80 wt%). The performance of sub‐layers with different CL designs is shown to be different. Simulation results show that substituting part of the Pt/C 40 wt% with Pt/C 80 wt% increases the cell performance. It was found that factors including proton conductivity, open circuit voltage, and sub‐layer thickness have a significant impact on overall cell performance. Different water distribution for different membrane electrode assembly designs was also observed in the simulation results. More liquid water accumulation inside the membrane electrode assembly is seen when the Pt/C 80 wt% sub‐layer is next to the gas diffusion layer. Finally, several key design parameters for the proposed high performance CL design including agglomerate radius, Nafion thin film thickness, and the Nafion volume fraction within the agglomerate in terms of CL fabrication were identified on the basis of our simulation results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The gas crossover phenomenon in polymer electrolyte fuel cells (PEFCs) is an indicator of membrane degradation. The objective of this paper is to numerically investigate the effects of hydrogen and oxygen crossover through the membrane in PEFCs. A gas crossover model is newly developed and implemented in a comprehensive multi-dimensional, multi-phase PEFC model developed earlier. A parametric study is carried out to investigate the effects of the crossover diffusion coefficients for hydrogen and oxygen as well as the membrane thickness. The simulation results demonstrate that the hydrogen crossover induces an additional oxygen reduction reaction (ORR) and consequently causes an additional voltage drop, while the influence of oxygen crossover on PEFC performance is relatively insignificant because it leads to the hydrogen/oxygen chemical reaction at the anode side. Finally, using the time-dependent gas crossover data that are available in the literature (measured in days), we conduct gas crossover simulations to examine the effects of increased gas crossover due to membrane degradation on PEFC performance and successfully demonstrate decaying polarization curves with respect to time. This study clearly elucidates the detailed mechanisms of the hydrogen and oxygen crossover phenomena and their effect on PEFC performance and durability.  相似文献   

17.
Carbon-supported Pt catalysts (Pt/Cs) for use of cathode catalyst layers (CLs) for PEFCs were covered with silica layers in order to improve performance. CLs with low ratio of ionomer to carbon (I/C) for Pt/C and silica-coated Pt/C were fabricated using an inkjet printing (denoted as Pt/C(IJ) and SiO2-Pt/C(IJ)) to reduce oxygen diffusion resistance. Compared to Pt/C(IJ), SiO2-Pt/C(IJ) ink maintained good dispersion and high stability under the lower I/C. The performance of SiO2-Pt/C(IJ) was significantly higher than Pt/C(IJ) at 0.6 V under all humidity conditions. In particular, the performance of SiO2-Pt/C(IJ) under low humidity conditions showed noticeable improvement regardless of current density area. From FIB-SEM, it was confirmed that the morphologies and porosities of both catalysts were the same. Thus, these results indicate that oxygen diffusion resistance, related to structure of CLs, hardly affects the performance, whereas improved performance is attributed to increased proton conductivity by silica layers containing hydrophilic groups.  相似文献   

18.
The purge process is essential for successful cold start of fuel cell vehicles during winter, and it plays an important role in the removal of the residual water inside the fuel cell in a short time. In this study, a new purge method is introduced by adding a small amount of hydrogen to the cathode gas flow in order to increase the purge performance. The experimental results demonstrate that the hydrogen addition purge method is very effective in removing the residual water near the catalyst layer. The water removal is verified by measuring the resistance of the fuel cell, dew point temperature of the outlet purge gas, and weights of the membrane electrolyte assembly (MEA) and gas diffusion layer (GDL). In addition, the image of the GDL after the purge process is captured to show the advantage of the hydrogen addition purge method. Cold start experiments are also conducted after the optimal purge process. It is also found that the degradation of the catalyst layer is not serious after the hydrogen addition purge process.  相似文献   

19.
The shape of gas flow field determines the distribution of reactive gas and the drainage performance so it has a significant impact on cold start performance. This work designs three novel cathode flow fields of stacks through variable cross-section design to improve drainage, which are the single variable section serpentine flow field, the variable section interdigitate flow field and the variable section parallel flow field. The cold start characteristics and internal behavior of diverse novel stack flow fields are investigated by segmented cell technology. The results show that stack with the single variable section serpentine flow field realizes the fastest cold start when the temperature is below ?5 °C. However, the variable section interdigitate flow field displays the shortest cold start time when the temperature is above ?5 °C. The evolution of the current density distribution of the single cell in different position of the same stack is inconsistent during cold start. The key regions with strong electrochemical performance of different stack flow fields are found. The performance degradation of the stack with the single variable section serpentine flow field is the lowest when start fails. This work can supply experimental support for the selection of flow fields for cold start.  相似文献   

20.
Cobalt-based catalysts for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cell (PEMFC) have been successfully incorporated cobalt oxide (Co3O4) onto Vulcan XC-72 carbon powder by thermal decomposition of Co-ethylenediamine complex (ethylenediamine, NH2CH2CH2NH2, denoted en) at 850 °C. The catalysts were prepared by adsorbing the cobalt complexes [Co(en)(H2O)4]3+, [Co(en)2(H2O)2]3+ and [Co(en)3]3+ on commercial XC-72 carbon black supports, loading amount of Co with respect to carbon black was about 2%, the resulting materials have been pyrolyzed under nitrogen atmosphere to create CoOx/C catalysts, donated as E1, E2, and E3, respectively. The composite materials were characterized using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). Chemical compositions of prepared catalysts were determined using inductively-coupled plasma-atomic emission spectroscopy (ICP-AES). The catalytic activities for ORR have been analyzed by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The electrocatalytic activity for oxygen reduction of E2 is superior to that of E1 and E3. Membrane electrode assemblies (MEAs) containing the synthesized CoOx/C cathode catalysts were fabricated and evaluated by single cell tests. The E2 cathode performed better than that of E1 and E3 cathode. This can be attributed to the enhanced activity for ORR, in agreement with the composition of the catalyst that CoO co-existed with Co3O4. The maximum power density 73 mW cm−2 was obtained at 0.3 V with a current density of 240 mA cm−2 for E2 and the normalized power density of E2 is larger than that that of commercial 20 wt.% Pt/C-ETEK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号