首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate the effect of transition metal addition to platinum with different support materials on preferential CO oxidation, structure and chemical properties of supported bimetallic catalysts prepared by electron beam irradiation method were correlated to the catalytic performance. On Al2O3, decoration of Pt by small amount of Co (Co/Pt ∼ 0.03) drastically increased CO and O2 conversions while addition of equimolar Cu to Pt increased them only above 100 °C, where the rate-controlling factor was suggested to change from oxygen transport to CO activation. On CeO2, either addition of Co or Cu to Pt had minor or negative effect on high O2 conversion inherent to high oxygen transport at Pt–CeO2 interface. On Pt–Cu/CeO2, however, metal-CuOx interface dominates the reaction characteristics to give improved selectivity, which is suitable for deep CO removal in excess O2/CO condition. The order of selectivity above 100 °C, Pt–CoOx > Pt(alloy)–CuOx > Pt–CeO2 interfaces, was derived from structural analysis and catalytic tests.  相似文献   

2.
Pd–Rh/metal foam catalyst was studied for steam methane reforming and application to SOFC fuel processing. Performance of 0.068 wt% Pd–Rh/metal foam catalyst was compared with 13 wt% Ni/Al2O3 and 8 wt% Ru/Al2O3 catalysts in a tubular reactor. At 1023 K with GHSV 2000 h−1 and S/C ratio 2.5, CH4 conversion and H2 yield were 96.7% and 3.16 mol per mole of CH4 input for Pd–Rh/metal foam, better than the alumina-supported catalysts. In 200 h stability test, Pd–Rh/metal foam catalyst exhibited steady activity. Pd–Rh/metal foam catalyst performed efficiently in a heat exchanger platform reactor to be used as prototype SOFC fuel processor: at 983 K with GHSV 1200 h−1 and S/C ratio 2.5, CH4 conversion was nearly the same as that in the tubular reactor, except for more H2 and CO2 yields. Used Pd–Rh/metal foam catalyst was characterized by SEM, TEM, BET and CO chemisorption measurements, which provided evidence for thermal stability of the catalyst.  相似文献   

3.
CeO2-supported Pt–Cu bimetallic catalysts were synthesized by radiolytic process and their PROX activities were evaluated in relation to structural properties of the catalysts. Irradiating the aqueous precursor solution yielded Pt–Cu alloy nanoparticles and amorphous-like CuO on CeO2 which are thermodynamically stable products formed from reduced Pt and Cu. Addition of Cu to Pt significantly improved CO selectivity in PROX reaction. The Pt–Cu catalysts had wide temperature window for 100% CO conversion in contrast to very narrow window for monometallic Pt and Cu catalysts. Much lower light-off temperature for Pt–Cu catalysts than Cu catalyst revealed that Pt-Cu alloy surface is the active center. Regardless of the amount of CuO phase, the bimetallic catalyst exhibited high catalytic performance, which further revealed that Cu in close contact with Pt is responsible for the improved selectivity. The CuO phase was suggested to promote oxygen supply to CO chemisorbed on Pt–Cu alloy surface.  相似文献   

4.
This work concentrates on the production of H2 directly from raw biomass through liquid phase reforming in the presence of a liquid base and a solid catalyst. Both precious metal and base metal catalysts were found to be active for the liquid phase hydrolysis and reforming of wood. Pt-based catalysts, particularly Pt–Re, were shown by atomistic modeling to be more selective toward breaking C–C bonds, resulting in a higher selectivity to hydrogen versus methane. Ni-based catalysts were found to prefer breaking C–O bonds, favoring the production of methane. The results showed that at a constant wood concentration, increasing the concentration of base (base to wood ratio) in the presence of Raney Ni catalysts resulted in greater selectivity toward hydrogen. The amount of wood converted to gas was lower due to increased production of undesirable organic acids from the wood at higher base concentrations. It was shown that by modifying Ni-based catalysts with dopants, it was possible to reduce the base concentration while maintaining the selectivity toward hydrogen and increasing wood conversion to gas versus organic acids.  相似文献   

5.
On-board reforming of liquid fuels is attractive for fuel cell-powered auxiliary power units in vehicles. In this work, monometallic Ni/Al2O3/cordierite, Rh/Al2O3/cordierite and bimetallic Ni–Rh/Al2O3/cordierite monolithic catalysts were prepared, characterized and tested in ATR of isooctane for syngas production. Compared to monometallic formulations, the bimetallic Ni–Rh/Al2O3 catalyst was active for ATR at lower temperature and H2 production already reached the equilibrium composition in 400–550 °C temperature range. The Ni–Rh/Al2O3 catalyst exhibited stable performances for 140 h in ATR of isooctane at 700 °C, and was unaffected by oxidizing conditions at 700 °C. Thermoneutral reactions conditions at H2O/C = 2 were obtained with O/C = 0.66. Carbon deposition was marginal during ATR of isooctane and no carbons whiskers were detected. Post-reaction characterizations showed that the Ni particles were small enough to prevent filamentous carbon formation, while Rh also prevented carbon film deposition by improving the gasification of adsorbed C with steam.  相似文献   

6.
Nowadays, there is a growing interest towards pure hydrogen production for proton exchange membrane fuel cell applications. Methane steam reforming reaction is one of the most important industrial chemical processes for hydrogen production. This reaction is usually carried out in fixed bed reactors at 30–40 bar and at temperatures above 850 °C. In this work, a dense Pd–Ag membrane reactor packed with a Ni-based catalyst was used to carry out the methane steam reforming reaction between 400 and 500 °C and at relatively low pressure (1.0–3.0 bar) with the aim of obtaining higher methane conversion and hydrogen yield than a fixed bed reactor, operated at the same conditions. Furthermore, the Pd–Ag membrane reactor is able to produce a pure, or at least, a CO and CO2 free hydrogen stream. A 50% methane conversion was experimentally achieved in the membrane reactor at 450 °C and 3.0 bar whereas, at the same conditions, the fixed bed reactor reached a 6% methane conversion. Moreover, 70% of high-purity hydrogen on total hydrogen produced was collected with the sweep-gas in the permeate stream of the membrane reactor. From a modeling point of view, the mathematical model realized for the simulation of both the membrane and fixed bed reactors was satisfactorily validated with the experimental results obtained in this work.  相似文献   

7.
In this paper CO2 reforming of methane combined with partial oxidation of methane to syngas over noble metal catalysts (Rh, Ru, Pt, Pd, Ir) supported on alumina-stabilized magnesia has been studied. The catalysts were characterized by using BET, XRD, SEM, TEM, TPR, TPH and H2S chemisorption techniques. The H2S chemisorption analysis showed an active metal crystallite size in the range of 1.8-4.24 nm for the prepared catalysts. The obtained results revealed that the Rh and Ru catalysts showed the highest activity in combined reforming and both the dry reforming and partial oxidation of methane. The obtained results also showed a high catalytic stability without any decrease in methane conversion up to 50 h of reaction. In addition, the H2/CO ratio was around 2 and 0.7 over different catalysts for catalytic partial oxidation and dry reforming, respectively.  相似文献   

8.
Nano-sized Pt–Pd/C and Pt–Co/C electrocatalysts have been synthesized and characterized by an alcohol-reduction process using ethylene glycol as the solvent and Vulcan XC-72R as the supporting material. While the Pt–Pd/C electrodes were compared with Pt/C (20 wt.% E-TEK) in terms of electrocatalytic activity towards oxidation of H2, CO and H2–CO mixtures, the Pt–Co/C electrodes were evaluated towards oxygen reduction reaction (ORR) and compared with Pt/C (20 wt.% E-TEK) and Pt–Co/C (20 wt.% E-TEK) and Pt/C (46 wt.% TKK) in a single cell. In addition, the Pt–Pd/C and Pt–Co/C electrocatalyst samples were characterized by XRD, XPS, TEM and electroanalytical methods. The TEM images of the carbon supported platinum alloy electrocatalysts show homogenous catalyst distribution with a particle size of about 3–4 nm. It was found that while the Pt–Pd/C electrocatalyst has superior CO tolerance compared to commercial catalyst, Pt–Co/C synthesized by polyol method has shown better activity and stability up to 60 °C compared to commercial catalysts. Single cell tests using the alloy catalysts coated on Nafion-212 membranes with H2 and O2 gases showed that the fuel cell performance in the activation and the ohmic regions are almost similar comparing conventional electrodes to Pt–Pd anode electrodes. However, conventional electrodes give a better performance in the ohmic region comparing to Pt–Co cathode. It is worth mentioning that these catalysts are less expensive compared to the commercial catalysts if only the platinum contents were considered.  相似文献   

9.
A nickel-silica core@shell catalyst was applied for a methane tri-reforming process in a fixed-bed reactor. To determine the optimal condition of the tri-reforming process for production of syngas appropriate for methanol synthesis the effect of reaction temperature (550–750 °C), CH4:H2O molar ratio (1:0–3.0) and CH4:O2 molar ratio (1:0–0.5) in the feedstock was investigated. CH4 conversion rate and H2/CO ratio in the produced syngas were influenced by the feedstock composition. Increasing the amount of steam above the proportion of CH4:H2O 1:0.5 reduced the H2:CO molar ratio in produced syngas to ∼1.5. Increasing oxygen partial pressure improved methane conversion to 90% at 750 °C. At low ∼550 °C reaction temperature the tri-reforming process was not effective with low hydrogen production (H2 yield ∼20%) and very low <5% CO2 conversion. Increasing reaction temperature increased hydrogen yield to ∼85% at 750 °C. From all the tested reaction conditions the optimal for tri-reforming over the 11%Ni@SiO2 catalyst was: feed composition with molar ratio CH4:CO2:H2O:O2:He 1:0.5:0.5:0.1:0.4 at T = 750 °C. The results were explained in the context of characterisation of the catalysts used. The obtained results showed that the tri-reforming process can be applied for production of syngas with composition suitable for methanol synthesis.  相似文献   

10.
SO2-depolarized electrolysis (SDE) is pivotal in the hybrid sulfur process, which is a promising approach for mass hydrogen production without CO2 emission. The anode overpotential of SDE is the key component of electrolysis potential. This factor can be reduced by improving anode reaction kinetics. Such improvement is commonly achieved by employing Pt/AC as anode electrode and catalyst, thus also improving economic and electrocatalytic performances. In this work, anode catalysts for SO2 oxidation reaction are experimentally studied. Platinum-based bimetallic catalysts, including Pt–Pd/C, Pt–Rh/C, Pt–Ru/C, Pt–Ir/C, and Pt–Cr/C, are prepared and characterized. Their electrochemical characteristics for SDE in a once-through mode are investigated in SO2-saturated 30 wt% sulfuric acid at room temperature by various approaches such as cyclic voltammetry, linear sweep voltammetry, and polarization curves. Results show that 60 wt% Pt–Cr/C exhibits the highest electrocatalytic activity for SDE. Further studies on the metal proportion in Pt–Cr/C show that at a Pt:Cr atomic ratio of 1:2, this bimetallic catalyst demonstrates equal or even better electrolysis performance than 60 wt% Pt/C at a significantly lower economic cost.  相似文献   

11.
An integrated reactor system which combines oxygen permeable La0.6Sr0.4Co0.8Ni0.2O3−δ (LSCN) perovskite ceramic hollow fiber membrane with Ni based catalyst has been successfully developed to produce hydrogen through oxy-CO2 reforming of methane (OCRM). Dense La0.6Sr0.4Co0.8Ni0.2O3−δ hollow fiber membrane was prepared using phase inversion-sintering method. OCRM reaction was tested from 650 °C to 800 °C with a quartz reactor packed with 0.5 g Ni/Al2O3 catalyst around the LSCN hollow fiber membrane. CH4 and CO2 were used as reactants and air as the oxygen source was fed through the bore side of the hollow fiber membrane. In order to gauge the effectiveness of this membrane reactor system, air flow was closed at 800 °C and dry reforming of methane (DRM) was tested for comparison. The results show that the oxygen fluxes of LSCN membrane swept by helium are nearly 3 times less than those swept by OCRM reactants. With increasing temperature and oxygen supply, methane conversion in the OCRM reactor reaches 100%, but CO2 conversion decreases from 87% to 72% due to the competition reaction with POM. CO selectivity is as high as nearly 100% at reaction temperatures of 700 °C–800 °C while H2 selectivity reaches a maximum of 88% at 700 °C. At 800 °C, when air supply was closed and DRM was conducted for comparison, CO selectivity decreased to 91%, resulting in carbon deposition which was around 4 times more than those obtained under OCRM reaction and H2/CO ratio decreased from 0.93 to 0.74, showing better carbon resistance and higher H2 selectivity of the Ni-based catalyst over the integrated oxygen separation-OCRM reaction across the LSCN hollow fiber membrane reactor.  相似文献   

12.
Microchannel heat exchangers and reactors can deliver very high performance in small packages. Such heat exchangers are typically fabricated from aluminum, copper, stainless steel, and silicon materials. Ceramic microchannel reactors offer some significant advantages over their metallic counterparts, including very-high-temperature operation, corrosion resistance in harsh chemical environments, low cost of materials and manufacturing, and compatibility with ceramic-supported catalysts. This work describes a ceramic microchannel reactor that achieves process intensification by combining heat-exchanger and catalytic-reactor functions to produce syngas. A complete computational fluid dynamics (CFD) model as well as a geometrically simplified hybrid CFD/chemical kinetics model is used in conjunction with experimentation to examine heat transfer, fluid flow, and chemical kinetics within the ceramic microchannel structure. Heat-exchanger effectiveness of up to 88% is experimentally demonstrated. Reactive heat-exchanger performance for methane-steam reforming reaches 100% methane conversion and high selectivity to syngas at a gas hourly space velocities (GHSV) of 15,000 h−1. Model results agree well with experimental data and provide insight into physical processes underway during reactor operation.  相似文献   

13.
CuFe2O4 supported on ZrO2 and CeO2 for two-step methane reforming was evaluated to determine if it could enhance the reactivity, CO selectivity and thermal stability of CuFe2O4. Two-step methane reforming consists of a syngas production step and a water splitting step. CuFe2O4 supported on ZrO2 and CeO2 was prepared using an aerial oxidation method. Non-isothermal methane reduction was carried out on TGA to compare the reactivity of CuFe2O4/ZrO2 and CuFe2O4/CeO2. In addition, a syngas production step was performed at 900 °C and water splitting was conducted at 800 °C alternatively five times to compare the methane conversion, CO selectivity, cycle ability and hydrogen production by water splitting in a fixed bed reactor. If the 1st syngas production step results are excluded due to over-oxidation, CuFe2O4/ZrO2 and CuFe2O4/CeO2 showed approximately 74.0–82.8% and 60.3–87.5% methane conversion, respectively, and 44.0–47.8% and 65.2–81.5% CO selectivity, respectively. Using CeO2 and ZrO2 as supports effectively improved the reactivity and methane conversion compared to CuFe2O4. CuFe2O4/ZrO2 showed high methane conversion due to the high phase stability and thermal stability of ZrO2 but the selectivity was not improved. After 5 successive cycles, the CeFeO3 phase was found on CuFe2O4/CeO2. Furthermore, methane conversion, CO selectivity and the amounts of hydrogen production of CuFe2O4/CeO2 increased with increasing number of cycles. Additional test up to the 11th cycle on CuFe2O4/CeO2 revealed that CeO2 is a better support that ZnO2 in terms of the reactivity and CO selectivity.  相似文献   

14.
Ni incorporated and Ni–Rh incorporated bimetallic MCM-41 like mesoporous catalysts, which were synthesized following a one-pot hydrothermal procedure, showed very high activity in dry reforming of methane. Among the Ni incorporated catalysts, Ni-MCM-41-V, with a Ni/Si ratio of 0.19, showed the best catalytic performance. Rh incorporation into this catalyst by the one-pot procedure improved both activity and time on stream stability of the catalyst. However, Rh incorporation by impregnation caused instabilities due to coke formation, after about 11 h of reaction time. Occurrence of reverse water gas shift reaction caused higher CO selectivity than H2 selectivity, with the Ni incorporated catalysts. Rh incorporation into these catalysts decreased the relative significance of reverse water gas shift reaction, with respect to dry reforming reaction.  相似文献   

15.
In the present study comparative electrochemical study of methanol electro-oxidation reaction, the effect of ruthenium addition and experimental parameters on methanol electro-oxidation reaction at high performance carbon supported Pt and Pt–Ru catalysts have been studied by cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) in H2SO4 (0.05–2.00 M) + CH3OH (0.01–4.00 M) at 20–70 °C. Tafel plots for the methanol oxidation reaction on Pt and Pt–Ru catalysts show reasonably well-defined linear region with the slopes of 128–174 mV dec−1(α = 0.34–0.46). The activation energies from Arrhenius plots have been found as 39.06–50.65 kJ mol−1. As a result, methanol oxidation is enhanced by the addition of ruthenium. Furthermore, Pt–Ru (25:1) catalyst shows best electro–catalytic activity, higher resistance to CO, and better long term stability compared to Pt–Ru (3:1), Pt–Ru (1:1), and Pt. Finally, the EIS measurements on Pt–Ru (25:1) catalyst reveals that methanol electro-oxidation reaction consists of two process: methanol dehydrogenation step at low potentials (<700 mV) and the oxidation removal of COads by OHads at higher potentials (>700 mV).  相似文献   

16.
Hydrogen production from the combination of catalytic partial oxidation of methane (CPOM) and water gas shift reaction (WGSR), viz. the two-stage reaction, in a Swiss-roll reactor is investigated numerically. Particular emphasis is placed on the interaction among the reaction of CPOM, the cooling effect due to steam injection and the excess enthalpy recovery with heat recirculation. A rhodium (Rh) catalyst bed sitting at the center of the reactor is used to trigger CPOM, and two different WGSRs, with the aids of a high-temperature (Fe–Cr-based) shift catalyst and a low-temperature (Cu–Zn-based) shift catalyst, are excited. Two important parameters, including the oxygen/methane (O/C) ratio and the steam/methane (S/C) ratio, affecting the efficiencies of methane conversion and hydrogen production are taken into account. The predictions indicate that the O/C ratio of 1.2 provides the best production of H2 from the two-stage reaction. For a fixed O/C ratio, the H2 yield is relatively low at a lower S/C ratio, stemming from the lower performance of WGSR, even though the cooling effect of steam is lower. On the contrary, the cooling effect becomes pronounced as the S/C ratio is high to a certain extent and the lessened CPOM leads to a lower H2 yield. As a result, with the condition of gas hourly space velocity (GHSV) of 10,000 h−1, the optimal operation for hydrogen production in the Swiss-roll reactor is suggested at O/C = 1.2 and S/C = 4–6.  相似文献   

17.
整体型催化剂上甲烷自热氧化制合成气   总被引:1,自引:0,他引:1  
用镍金属制备了一整体催化剂并与负载铑和铂比较了甲烷氧化制合成气的性能。结果表明,镍金属催化剂上甲烷转化率、H2和CO的选择性与铑催化剂相当,而且稳定性非常好。反应中加入H2O和CO2的实验表明,产物中H2/CO的比例可以直接调节。  相似文献   

18.
Here we report effective production of pure hydrogen from crude glycerol by the one-stage sorption enhanced steam reforming (SESR) process. This process yielded H2 up to 88% with a very high purity (99.7 vol%) at atmospheric pressure and at 550–600 °C with a steam/C = 3 in a fixed-bed reactor over a mixture of Ni/Co catalyst derived from hydrotalcite-like material (HT) and dolomite as CO2 sorbent. The concentration of methane is lowest at 575 °C, while the CO concentration increases concurrently with increasing temperature from 525 to 600 °C. The high coking potential of glycerol and fatty acid methyl esters (C17–C19) resulted in the increased formation of coke, thus lower hydrogen yield. The reaction rates of methane reforming and water–gas shift reactions are much higher than the steam reforming of crude glycerol on Co–Ni catalysts. The high purity of hydrogen can be obtained even at low spatial times with low crude glycerol conversions. Our work reveals a great potential to directly convert biomass derived complex mixtures to the most clean energy carrier of hydrogen with high yield and purity.  相似文献   

19.
This paper reports hydrogen production from oxidative steam reforming of 1-propanol and propylene glycol over Ni–M/Y2O3–ZrO2 (10% wt/wt Y2O3; M = Ir, Pt, Ru) bimetallic catalysts promoted with K. The results are compared with those obtained over the corresponding monometallic catalyst. The catalytic performance of the calcined catalysts was analyzed in the temperature range 723–773 K, adjusting the total composition of the reactants to O/C = 4 and S/C = 3.2–3.1 (molar ratios). The bimetallic catalysts showed higher hydrogen selectivity and lower selectivity of byproducts than the monometallic catalyst, especially at 723 K. Ni–Ir performed best in the oxidative steam reforming of both 1-propanol and propylene glycol. The presence of the noble metal favours the reduction of the NiO and the partial reduction of the support. The NiO crystalline phase present in the calcined catalysts was transformed to Ni° during oxidative steam reforming. The adsorption and subsequent reactivity of both 1-propanol and propylene glycol over Ni–Ir and Ni catalysts were followed by FTIR; C–C bond cleavage was found to occur at a lower temperature in propylene glycol than in 1-propanol.  相似文献   

20.
Partial oxidation of methane (POM) has been tested in an asymmetric microchannel reactor with different inlet configurations. One inlet of the reactor provided successive splitting of an inlet flow into parallel channels, whereas the opposite inlet allowed the inlet flow to enter the parallel channels simultaneously. It was found that concentrations of carbon monoxide and carbon dioxide changed by 20–30% and the conversion of methane changed by 5–20%, depending on the rate and direction of the inlet flow. The hydrogen production rate practically did not depend on the inlet configuration and equaled 15 l/h at the inlet flow rates from 600 to 1400 cm3/min and at the methane conversion of 80%. The data obtained demonstrated that the use of different operating modes of the asymmetric microreactor allows changing the composition of produced syngas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号