首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co3O4, Fe2O3 and a mixture of the two oxides Co–Fe (molar ratio of Co3O4/Fe2O3 = 0.67 and atomic ratio of Co/Fe = 1) were prepared by the calcination of cobalt oxalate and/or iron oxalate salts at 500 °C for 2 h in static air using water as a solvent/dispersing agent. The catalysts were studied in the steam reforming of ethanol to investigate the effect of the partial substitution of Co3O4 with Fe2O3 on the catalytic behaviour. The reforming activity over Fe2O3, while initially high, underwent fast deactivation. In comparison, over the Co–Fe catalyst both the H2 yield and stability were higher than that found over the pure Co3O4 or Fe2O3 catalysts. DRIFTS-MS studies under the reaction feed highlighted that the Co–Fe catalyst had increased amounts of adsorbed OH/water; similar to Fe2O3. Increasing the amount of reactive species (water/OH species) adsorbed on the Co–Fe catalyst surface is proposed to facilitate the steam reforming reaction rather than decomposition reactions reducing by-product formation and providing a higher H2 yield.  相似文献   

2.
3.
Thermal behaviors and stability of glass/glass–ceramic-based sealant materials are critical issues for high temperature solid oxide fuel/electrolyzer cells. To understand the thermophysical properties and devitrification behavior of SrO–La2O3–Al2O3–B2O3–SiO2 system, glasses were synthesized by quenching (25 − X)SrO–20La2O3–(7 + X)Al2O3–40B2O3–8SiO2 oxides, where X was varied from 0.0 mol% to 10.0 mol% at 2.5 mol% interval. Thermal properties were characterized by dilatometry and differential scanning calorimetry (DSC). Microstructural studies were performed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). All the compositions have a glass transition temperature greater than 620 °C and a crystallization temperature greater than 826 °C. Also, all the glasses have a coefficient of thermal expansion (CTE) between 9.0 × 10−6 K−1 and 14.5 × 106 K−1 after the first thermal cycle. La2O3 and B2O3 contribute to glass devitrification by forming crystalline LaBO3. Al2O3 stabilizes the glasses by suppressing devitrification. Significant improvement in devitrification resistance is observed as X increases from 0.0 mol% to 10.0 mol%.  相似文献   

4.
Pristine Ni/γ–Al2O3 and CeO2–Ni/γ–Al2O3 catalysts were prepared by co-impregnation technique for dry reforming of propane. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were used to examine the structure and morphology of the catalysts before and after the reforming reactions. The excellent interaction between catalyst active phases was observed in both CeO2–Ni/γ–Al2O3 and Ni/γ–Al2O3 stabilized with polyethelene glycol (Ni/γ–Al2O3–PEG). Towards C3H8 and CO2 conversion, the CeO2–Ni/γ–Al2O3 and Ni/γ–Al2O3–PEG showed improved catalytic activity when compared to the pristine Ni/γ–Al2O3 catalyst. Interestingly, high H2 concentration was achieved with the CeO2–Ni/γ–Al2O3 and high CO concentration with the Ni/γ–Al2O3–PEG, which is due to the nanoconfinement of nickel particles within the support and favorable metal-support interaction as a result of plasma reduction. The CeO2–Ni/γ–Al2O3 catalyst exhibited better stability for anti-sintering and coke resistance, thus exhibiting high reactivity and durability in the dry reforming.  相似文献   

5.
The effects of B2O3–Bi2O3–PbO (BBP) frit on the electrochemical performance, electrical conductivity, and thermal expansion of LaBaCo2O5+δ (LBCO) cathode were investigated. BBP frit was found to be effective in lowering the sintering temperature of LBCO cathode by about 200 °C and in improving its electrochemical performance within the intermediate-temperature range of 600–800 °C. LBCO with 5 wt.% BBP frit cathode based on Sm0.2Ce0.8O1.9 electrolyte showed the best electrochemical performance, i.e., the lowest area-specific resistance (ASR) and cathodic overpotential. The ASR values were about 64.1%, 66.1%, and 74.5% lower than those of LBCO at 700, 750, and 800 °C, respectively. The cathodic overpotential decreased from 51.0 mV for LBCO to 8.2 mV at a current density of 0.2 A cm−2 at 700 °C. The electrical conductivity of LBCO with 5 wt.% BBP frit was about 320–330 S cm−1 at 600–800 °C in air.  相似文献   

6.
7.
This paper reports on the steam reforming, in continuous regime, of the aqueous fraction of bio-oil obtained by flash pyrolysis of lignocellulosic biomass (sawdust). The reaction system is provided with two steps in series: i) thermal step at 200 °C, for the pyrolytic lignin retention, and ii) reforming in-line of the treated bio-oil in a fluidized bed reactor, in the range 600–800 °C, with space-time between 0.10 and 0.45 gcatalyst h (gbio-oil)−1. The benefits of incorporating La2O3 to the Ni/α-Al2O3 catalyst on the kinetic behavior (bio-oil conversion, yield and selectivity of hydrogen) and deactivation were determined. The significant role of temperature in gasifying coke precursors was also analyzed. Complete conversion of bio-oil is achieved with the Ni/La2O3-αAl2O3 catalyst, at 700 °C and space-time of 0.22 gcatalyst h (gbio-oil)−1. The catalyst deactivation is low and the hydrogen yield and selectivity achieved are 96% and 70%, respectively.  相似文献   

8.
Ni/SiO2 and Ni–Al2O3/SiO2 catalysts were prepared by incipient wetness impregnation using citrate and nitrate precursors and tested with a reaction of combination of CO2 reforming and partial oxidation of methane to produce syngas (H2/CO). The catalytic activity of Ni/SiO2 and Ni–Al2O3/SiO2 greatly depended on interaction between NiO and support. NiO strongly interacted with support formed small nickel particles (about 4 nm for NiSC which is abbreviation of Ni/SiO2 prepared with Nickel citrate precursor) after reduction. The small nickel particles over NiSC catalysts exhibited a good catalytic performance.  相似文献   

9.
Ni catalysts supported on commercial α-Al2O3 modified by addition of CeO2 and/or ZrO2 were prepared in the present work. Since the principal objective was to evaluate the behavior of these systems and the support effect on the stability, methane reforming reactions were studied with steam, carbon dioxide, partial oxidation and mixed reforming. Results show that catalysts supported on Ce–Zr–α-Al2O3 composites present better reforming activity and stability noticeably higher than in the case of the reference support. With respect to composites, the presence of mixed oxides of CexZr1−xO2 type facilitates the formation of active phases with higher interaction. This fact reduces the deactivation by sintering conferring to the system a higher contribution of adsorbed oxygen species, favoring the deposited carbon elimination. These improvements resulted in being dependent on the Ce:Zr ratio of the composite, thus obtaining more stable catalysts for Ce:Zr = 4:1 ratios.  相似文献   

10.
α-Fe2O3 fine particles have been prepared by a mechanochemical process and a solution process. α-Fe2O3 nanoparticles with aggregates composed of the several tens nm primary particles were produced by the mechanochemical process. The nanoparticles were applied to the electrode as an active material for all-solid-state lithium batteries and the electrochemical properties of the cell were investigated. Typical charge–discharge curves, as seen in the liquid type cell using the α-Fe2O3 nanoparticles as an electrode were observed in the all-solid-state cell. The first discharge capacity of the cell of about 780 mAh g−1 was, however, smaller than the capacity of a cell using α-Fe2O3 particles prepared by the solution process, which were monodispersed particles of 250 nm without aggregates. In order to develop electrochemical performance of all-solid-state batteries, it is important to use the electrode particles without aggregation which lead to the formation of good solid–solid interface between active material and solid electrolyte particles.C  相似文献   

11.
Oxidative steam reforming of ethanol at low oxygen to ethanol ratios was investigated over nickel catalysts on Al2O3 supports that were either unpromoted or promoted with CeO2, ZrO2 and CeO2–ZrO2. The promoted catalysts showed greater activity and a higher hydrogen yield than the unpromoted catalyst. The characterization of the Ni-based catalysts promoted with CeO2 and/or ZrO2 showed that the variations induced in the Al2O3 by the addition of CeO2 and/or ZrO2 alter the catalyst's properties by enhancing Ni dispersion and reducing Ni particle size. The promoters, especially CeO2–ZrO2, improved catalytic activity by increasing the H2 yield and the CO2/CO and the H2/CO values while decreasing coke formation. This results from the addition of ZrO2 into CeO2. This promoter highlights the advantages of oxygen storage capacity and of mobile oxygen vacancies that increase the number of surface oxygen species. The addition of oxygen facilitates the reaction by regenerating the surface oxygenation of the promoters and by oxidizing surface carbon species and carbon-containing products.  相似文献   

12.
Al2O3–2SiO2 amorphous powders are synthesized by sol–gel method with tetraethoxysilane (TEOS) and aluminum nitrate (ANN) as the starting materials. The microstructure and phase structure of the powders are investigated by SEM and XRD analysis. Geopolymer materials samples are prepared by mechanically mixing stoichiometric amounts of calcined Al2O3–2SiO2 powders and sodium silicate solutions to allow a mass ratio of Na2O/Al2O3 = 0.4, 0.375, 0.35, 0.325, 0.288, 0.26, 0.23 or 0.2 separately, and finally to form a homogenous slurry at a fixed H2O/Na2O mole ratio = 11.7. The results show that the synthetic Al2O3–2SiO2 powders have polycondensed property and their compressive strengthes are similar to that of nature metakaolin geopolymer materials. The results also show that the water consumption is not the main influencing factor on electrical conductivity of harden geopolymer materials but it can intensively affect the microstructure of geopolymer materials. In addition, the electrical conductivity of harden geopolymer sample is investigated, and the results show that the geopolymer materials have a high ionic electrical conductivity of about 1.5 × 10−6 S cm−1 in air at room temperature.  相似文献   

13.
CO2 reforming of CH4 to synthesis gas was investigated by cold plasma jet (CPJ) only and combination of cold plasma jet with Ni/γ-Al2O3 catalyst at atmospheric pressure. The higher selectivity of H2 and CO, and higher energy efficiency was obtained by this novel process. The optimum experimental conditions are: CH4 = 3.33 Nl/min, CO2 = 5.00 Nl/min, N2 = 8.33 Nl/min, and the input power at 770 W. The results showed that, for the plasma only, the conversions of CH4 and CO2 were 46% and 34%, the selectivities of CO and H2 were 85% and 78%, the energy efficiency was 2.9 mmol/kJ, respectively; for the combination of cold plasma jet with Ni/γ-Al2O3 catalyst, the conversions of CH4 and CO2 were increased by 14% and 6%, the yield of H2 and CO increased by 18% and 11%, the energy efficiency reached at 3.7 mmol/kJ, respectively. And the catalyst hasn't accessorial heating. The CPJ method has the advantage of simple processing and is easy to be industrialized.  相似文献   

14.
In this study, methane and methanol steam reforming reactions over commercial Ni/Al2O3, commercial Cu/ZnO/Al2O3 and prepared Ni–Cu/Al2O3 catalysts were investigated. Methane and methanol steam reforming reactions catalysts were characterized using various techniques. The results of characterization showed that Cu particles increase the active particle size of Ni (19.3 nm) in Ni–Cu/Al2O3 catalyst with respect to the commercial Ni/Al2O3 (17.9). On the other hand, Ni improves Cu dispersion in the same catalyst (1.74%) in comparison with commercial Cu/ZnO/Al2O3 (0.21%). A comprehensive comparison between these two fuels is established in terms of reaction conditions, fuel conversion, H2 selectivity, CO2 and CO selectivity. The prepared catalyst showed low selectivity for CO in both fuels and it was more selective to H2, with H2 selectivities of 99% in methane and 89% in methanol reforming reactions. A significant objective is to develop catalysts which can operate at lower temperatures and resist deactivation. Methanol steam reforming is carried out at a much lower temperature than methane steam reforming in prepared and commercial catalyst (275–325 °C). However, methane steam reforming can be carried out at a relatively low temperature on Ni–Cu catalyst (600–650 °C) and at higher temperature in commercial methane reforming catalyst (700–800 °C). Commercial Ni/Al2O3 catalyst resulted in high coke formation (28.3% loss in mass) compared to prepared Ni–Cu/Al2O3 (8.9%) and commercial Cu/ZnO/Al2O3 catalysts (3.5%).  相似文献   

15.
Syngas production by CO2 reforming of coke oven gas (COG) was studied in a fixed-bed reactor over Ni/La2O3–ZrO2 catalysts. The catalysts were prepared by sol–gel technique and tested by XRF, BET, XRD, H2-TPR, TEM and TG–DSC. The influence of nickel loadings and calcination temperature of the catalysts on reforming reaction was measured. The characterization results revealed that all of the catalysts present excellent resistance to coking. The catalyst with appropriate nickel content and calcination temperature has better dispersion of active metal and higher conversion. It is found that the Ni/La2O3–ZrO2 catalyst with 10 wt% nickel loading provides the best catalytic activity with the conversions of CH4 and CO2 both more than 95% at 800 °C under the atmospheric pressure. The Ni/La2O3–ZrO2 catalysts show excellent catalytic performance and anti-carbon property, which will be of great prospects for catalytic CO2 reforming of COG in the future.  相似文献   

16.
The study first investigated the modification effect of natural mixed rare earths (MRE) on cobalt catalysts for CH4/CO2 reforming to synthesis gas. The Co/γ-Al2O3 catalysts modified with the natural mixed rare earths were synthesized by the impregnation method, and characterized via ICP, BET, XRD, H2-TPR, TEM and TG–DSC techniques. The result showed that the addition of mixed rare earths enhanced the anti-sintering ability of metallic cobalt after reduction and improved anti-coke performance of the catalysts via the synergic effect of mixed rare earths. The 20% Co/γ-Al2O3 catalyst promoted by the appropriate natural mixed rare earths exhibited good activity and stability with low carbon formation at 800 °C for 320 h reaction.  相似文献   

17.
Oxidative steam reforming (OSR) of n-propanol was studied over new Ni catalysts (ca. 7% Ni wt/wt) supported on Y2O3–ZrO2 oxides with different yttrium content (2–41 % Y2O3 wt/wt). Materials were characterized by X-ray diffraction, temperature-programmed reduction, X-ray photoelectron and Raman spectroscopy, scanning electron microscopy with energy dispersive X-ray analysis and high resolution transmission electron microscopy. Samples were used in calcined form and tested in the temperature range 673–773 K using a reactant feed of n-propanol/water/O2 at a molar ratio 1/9/0.5. Hydrogen production is related with the support composition and Ni dispersion.  相似文献   

18.
The physical properties and photoelectrochemical characterization of α-Fe2O3, synthesized by co-precipitation, have been investigated in regard to solar energy conversion. The optical gap is found to be 1.94 eV and the transition is indirectly allowed. The chemical analysis reveals an oxygen deficiency and the oxide exhibits n-type conductivity, confirmed by a negative thermopower. The plot log σ vs 1/T shows linearity in the range (400-670 K) with the donor levels at 0.14 eV below the conduction band and a break at ∼590 K, attributed to the ionization of the donors. The conduction occurs by small polaron hopping through mixed valences Fe2+/3+ with an electron mobility μ400 K of 10−3 V cm2 s−1. α-Fe2O3 exhibits long term chemical stability in neutral solution and has been characterized photoelectrochemically to assess its activity as bias-free O2-photoanode. The flat band potential Vfb (−0.45VSCE) and the electron density ND (1.63 × 1018 cm−3) were determined, respectively, by extrapolating the linear part to C−2 = 0 and the slope of the Mott Schottky plot. At pH 6.5, the valence band (+1.35VSCE) is suitably positioned with respect to the O2/H2O level (+0.62 V) and α-Fe2O3 has been evaluated for the chemical energy storage through the photocatalytic reaction: (, ΔG = 213.36 kJ mol−1). The best photoactivity occurs in solution (0.025 M, pH 8) with an oxygen rate evolution of 7.8 cm3 (g catalyst)−1 h−1.  相似文献   

19.
Ni catalysts supported on (CaO–ZrO2)-modified γ-Al2O3 were prepared by sequential impregnation. The effects of varied CaO to ZrO2 mole ratios at 0, 0.20, 0.35, 0.45, and 0.55 on the activity and stability of the modified Ni catalysts were studied. As a result of using CaO–ZrO2 as a promoter, each catalyst contained CaO–ZrO2 at only 5%. γ-Al2O3 used as support was modified by CaO–ZrO2 before the deposition of nickel oxide. The addition of CaO–ZrO2 at an optimum ratio was expected to improve the stability of Ni catalysts due to the decrease of carbon formation resulting from carbon gasification. All the fresh catalysts were characterized by ICP, XRD, BET surface area, TGA in H2, and TPR before catalytic testing in steam methane reforming at 600 °C. The spent catalysts were examined by TEM and TGA to observe the catalysts deactivation. The identification of CaO–ZrO2 phases indicated that CaO and ZrO2 reacted with each other to be monoclinic solid solution ZrO2, CaZr4O9, CaZrO3, and CaO corresponding to the phase diagram of CaO–ZrO2. The existence of CaZrO3 for 0.55 mol ratio of CaO/ZrO2 enhanced activity in steam methane reforming because oxygen vacancies in CaZrO3 greatly preferred the water adsorption creating the favorable conditions for carbon gasification and, then, water gas shift. The prominence and continued existence of these two reactions on the Ni catalysts leads to the particular increase of H2 yield. Moreover, the increasing amount of CaZrO3 in the Ni catalysts significantly improved carbon gasification. However, the Ni catalysts with CaZrO3 showed whisker carbon after catalytic testing; this carbon specie has not been tolerated in steam methane reforming. Therefore, these results significantly differed from the hypothesis.  相似文献   

20.
The work is aimed at enhancing the Li+ ion-conduction properties of polymer electrolytes (PE) for thin-film solid-state batteries. The research exploits novel ideas of structuring ionically conducting polymers or molecular polyether building blocks with grafted magnetic nanoparticles with the use of magnetic field, in order to enhance ionic conductivity along oriented helical PE chains. The experimental route being tested is based on the chemisorption of thiolated PEO on core–shell gold-coated maghemite. It was found that casting, under a gradient magnetic field (GMF), of concentrated PEs containing very small concentration – 0.5%(w/w) dithiol-connected Fe2O3/Fe3O4–Au nanoparticles results in enhancement of the total ionic conductivity by more than an order of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号