首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
In this research, a synthetic flue gas mixture with added methane was used as the feed gas in the process of dry reforming with partial oxidation of methane using a laboratory scale catalytic membrane reactor to produce hydrogen and carbon monoxide that can present the starting point for methanol or ammonia synthesis and Fischer-Tropsch reactions. 0.5% wt% Rh catalyst was deposited on a γ-alumina support using rhodium (III) chloride precursor and incorporated into a shell and tube membrane reactor to measure the yield of synthesis gas (CO and H2) and conversion of CH4, O2 and CO2 respectively. These measurements were used to determine the reaction order and rate of CO2. The conversion of CO2 and CH4 were determined at different gas hourly space velocities. The reaction order was determined to be a first-order with respect to CO2. The rate of reaction for CO2 was found to follow an Arrhenius equation having an activation energy of 49.88 × 10−1 kJ mol−1. Experiments were conducted at 2.5, 5 and 8 ml h−1 g−1 gas hourly space velocities and it was observed that increasing the hourly gas velocities resulted in a higher CO2 and CH4 conversions while O2 conversion remained fairly constant. CO2 had a high conversion rate of 96% at 8 ml h−1 g−1. The synthesized catalytic membrane was characterized by Scanning Electron Microscopy (SEM) and the Energy Dispersive X-ray Analysis (EDXA) respectively. The micrographs showed the Rh particles deposited on the alumina support. Single gas permeation of CH4, CO2 and H2 through the alumina support showed that the permeance of H2 increased as the pressure was increased to 1 × 105 Pa. The order of gas permeance was H2 (2.00 g/mol) > CH4 (16.04 g/mol) > N2 (28.01 g/mol) > O2 (32 g/mol) > CO2 (44.00 g/mol) which is indicative of Knudsen flow mechanism. The novelty of the work lies in the combination of exothermic partial oxidation and endothermic CO2 and steam reforming in a single step in the membrane reactor to achieve near thermoneutrality while simultaneously consuming almost all the greenhouse gases in the feed gas stream.  相似文献   

4.
Upon feeding CO to the gas phase of a photosynthetic bacterium Rubrivivax gelatinosus CBS, a CO oxidation: H2 production pathway is quickly induced. Hydrogen is produced according to the equation CO+H2O→CO2+H2. Two enzymes are known to be involved in this pathway: a CO dehydrogenase (CODH) with a pH optimum of 8.0 and above, and a hydrogenase with a pH optimum near 7.5. Carbon monoxide dehydrogenase also displays a temperature optimum near 50°C. When CO mass transfer is not limited during a CO uptake measurement, an extreme fast rate of CO uptake was determined, allowing for the removal of near 87% of the dissolved CO from a bacterial suspension within 10 s. This process has therefore two potential applications, one in the production of H2 gas as a clean renewable fuel using the linked CO oxidation: H2 production pathway, and another in using the CODH enzyme itself as a fuel–gas conditioning catalyst. These applications thereby will improve the overall H2 economy when gasified waste biomass serves as the inexpensive feedstock.  相似文献   

5.
In this work, a novel fluidized-bed membrane reactor (FBMR) for naphtha reforming in the presence of catalyst deactivation has been proposed. In this reactor configuration, a fluidized-bed reactor with perm-selective Pd–Ag (23 wt% Ag) wall to hydrogen has been used. The reactants are flowing through the tube side which is a fluidized-bed membrane reactor while hydrogen is flowing through the shell side which contains carrier gas. Hydrogen penetrates from fluidized-bed side into the carrier gas due to the hydrogen partial pressure driving force. Hydrogen permeation through membrane leads to shift the reaction toward the product according to the thermodynamic equilibrium. This membrane-assisted fluidized-bed reactor configuration solves some drawbacks of conventional naphtha reforming reactors such as pressure drop, internal mass transfer limitations and radial gradient of concentration and temperature. In FBMR the hydrogen which is produced in shell side is a valuable gas and can be used for different purposes. The two-phase theory of fluidization is used to model and simulate the FBMR. Industrial packed bed reactor (PBR) for naphtha reforming is used as a basis for comparison. This comparison shows enhancement in the yield of aromatic production in FBMR for naphtha reforming. Although using FBMR reduces hydrogen mole fraction in reaction side and enhances catalyst deactivation due to coking, but this effect can be compensated using advantages of FBMR such as suitable hydrogen to hydrocarbon molar ratio, lowering deactivation rate due to lower temperature, control of permeation rate by adjusting shell side pressure and shifting the equilibrium reactions. The impacts of hydrogen to hydrocarbon molar ratio, pressure, membrane thickness, flow rate and temperature have been investigated in this work.  相似文献   

6.
The present study investigates hydrogen production in a hydrogen-permselective membrane reactor from purge gases of an ammonia plant. Hydrogen which initially exists in the purge gases and hydrogen that is produced from decomposition of ammonia on nickel–Alumina catalyst bed simultaneously permeate from reaction side to shell side through a thin layer of palladium–silver membrane. A sweep gas can be used in the shell side for increasing driving force. The amount of hydrogen that can be gained annually and effect of pressure, temperature, thickness of Pd–Ag layer, configuration of flow in the membrane reactor and sweep gas flow ratio have been studied. This study shows that the countercurrent mode is better than co-current mode of operation. The rate of hydrogen permeation increases with increasing of temperature, pressure and sweep gas flow rate. This approach produces and separates large amounts of hydrogen and decreases environmental impacts owing to ammonia emission.  相似文献   

7.
In this paper a two-dimensional model of an annular cylindrical reactor filled with metal hydride suitable for hydrogen storage is presented. Comparison of the computed bed temperatures with published experimental data shows a reasonably good agreement except for the initial period. Effects of hydrogen pressure and external fluid temperatures on heat transfer and entropy generation are obtained. Results show that the time required for hydrogen charging and discharging is higher when the thermal capacity of the reactor wall is considered. The time required for absorption and desorption can be reduced significantly by varying the hydrogen gas pressure and external fluid temperatures. However, along with reduction in time the entropy generated during hydrogen storage and discharge increases significantly. Results also show that for the given input conditions, heat transfer between the external fluid and hydride bed is the main source of entropy generation.  相似文献   

8.
Metal hydride materials offer attractive solutions in addressing problems associated with hydrogen separation and purification from waste flue gases. However, a challenging problem is the deterioration of hydrogen charging performances resulting from the surface chemical action of electrophilic gases. In this work, the feasibility study of poisoning tolerance of surface modified AB5-type hydride forming materials and their application for hydrogen separation from process gases containing carbon dioxide and monoxide was carried out. Target composition of La(Ni,Co,Mn,Al)5 substrate was chosen to provide maximum reversible hydrogen capacity at the process conditions. The selected substrate alloy has been shown to be effectively surface-modified by fluorination followed by electroless deposition of palladium. The surface-modified material exhibited good coating quality, high cycle stability and minimal deterioration of kinetics of selective hydrogen absorption at room temperature, from gas mixtures containing 10% CO2 and up to 100 ppm CO. The experimental prototype of a hydrogen separation unit, based on the surface-modified metal hydride material, was tested and exhibited stable hydrogen separation and purification performances when exposed to feedstocks containing concentrations of CO2 and CO of up to 30% and 100 ppm, respectively.  相似文献   

9.
Defined co-cultures of hydrogen (H2) producers belonging to Citrobacter, Enterobacter, Klebsiella and Bacillus were used for enhancing the efficiency of biological H2 production. Out of 11 co-cultures consisting of 2–4 strains, two co-cultures composed of Bacillus cereus EGU43, Enterobacter cloacae HPC123, and Klebsiella sp. HPC793 resulted in H2 yield up to 3.0 mol mol−1 of glucose. Up-scaling of the reactor by 16-fold resulted in a corresponding increase in H2 production with an actual evolution of 7.44 L of H2. It constituted 58.2% of the total biogas. Continuous culture evolution of H2 by co-cultures (B. cereus EGU43 and E. cloacae HPC123) immobilized on ligno-cellulosic materials resulted in 6.4-fold improvement in H2 yield compared to free floating bacteria. This synergistic influence of B. cereus and E. cloacae can offer a better strategy for H2 production than undefined or mixed cultures.  相似文献   

10.
The aim of this work is to analyze the potential application of microporous silica membrane reactor carrying out methanol steam reforming reaction for hydrogen production. As a further study, a comparison with dense Pd–Ag membrane reactor and a traditional reactor, working at the same operating conditions of silica membrane reactor, is realized.  相似文献   

11.
A novel bimodal catalytic membrane reactor (BCMR) consisting of a Ru/γ-Al2O3/α-Al2O3 bimodal catalytic support and a silica separation layer was proposed. The catalytic activity of the support was successfully improved due to enhanced Ru dispersion by the increased specific surface area for the γ-Al2O3/α-Al2O3 bimodal structure. The silica separation layer was prepared via a sol–gel process, showing a H2 permeance of 2.6 × 10−7 mol Pa−1 m−2 s−1, with H2/NH3 and H2/N2 permeance ratios of 120 and 180 at 500 °C. The BCMR was applied to NH3 decomposition for COx-free hydrogen production. When the reaction was carried out with a NH3 feed flow rate of 40 ml min−1 at 450 °C and the reaction pressure was increased from 0.1 to 0.3 MPa, NH3 conversion decreased from 50.8 to 35.5% without H2 extraction mainly due to the increased H2 inhibition effect. With H2 extraction, however, NH3 conversion increased from 68.8 to 74.4% due to the enhanced driving force for H2 permeation through the membrane.  相似文献   

12.
The production of high-purity hydrogen using the water–gas-shift reaction in both conventional fixed bed reactor and hydrogen perm-selective membrane reactor at low to medium scale is studied in this work by developing and comparing models with different complexity levels. A two-dimensional rigorous reactor model considering radial and axial variations of properties (including bed porosity), setting mass, energy and momentum differential balances, and nesting a rigorous model for mass transfer within the porous catalyst was considered as reference for comparison. Different simplifications of this model for taking into account mass-transfer effects within the catalyst pellet (Thiele modulus, evaluation of apparent kinetic constants, empirical correlation for effectiveness factors or just neglecting these effects) were tested, being observed that these effects are not negligible and that the first two approaches are accurate enough for taking into account mass transfer within catalyst pellets. Regarding to the reactor model, it was observed that one-dimensional models are not adequate, especially for the membrane reactor. Analogously, neglecting the momentum balances in the reactor (as made is most simulations reported in the literature) leads to important misspredictions in the behaviour of the membrane reactor performance. Finally, the influence of the main operation parameters (inlet temperature, pressure, space velocity, etc.) was studied using the detailed reactor model, concluding that space velocity and pressure are the most important parameters affecting reactor performance for membrane reactors.  相似文献   

13.
Ethanoligenens harbinense is a promising hydrogen producing microorganism due to its high inherent hydrogen production rate. Even though the effect of media optimization and inhibitory metabolites has been studied in order to improve the hydrogen productivity of these cultures, the identification of the underlying causes of the observed changes in productivity has not been targeted to date. In this work we present a genome based metabolic flux analysis (MFA) framework, for the comprehensive study of E. harbinense in culture, and the effect of inhibitory metabolites and media composition on its metabolic state. A metabolic model was constructed for E. harbinense based on its annotated genome sequence and proteomic evidence. This model was employed to perform MFA and obtain the intracellular flux distribution under different culture conditions. These results allow us to identify key elements in the metabolism that can be associated to the observed production phenotypes, and that can be potential targets for metabolic engineering in order to enhanced hydrogen production in E. harbinense.  相似文献   

14.
Partial oxidation of ethanol was performed in a dense Pd–Ag membrane reactor over Rh/Al2O3 catalyst in order to produce a pure or, at least, COx-free hydrogen stream for supplying a PEM fuel cell. The membrane reactor performances have been evaluated in terms of ethanol conversion, hydrogen yield, COx-free hydrogen recovery and gas selectivity working at 450 °C, GHSV ∼ 1300 h−1, O2:C2H5OH feed molar ratio varying between 0.33:1 and 0.62:1 and in a reaction pressure range from 1.0 to 3.0 bar. As a result, complete ethanol conversion was achieved in all the experimental tests. A small amount of C2H4 and C2H4O formation was observed during reaction. At low pressure and feed molar ratio, H2 and CO are mainly produced, while at stronger operating conditions CH4, CO2 and H2O are prevalent compounds. However, in all the experimental tests no carbon formation was detected. As best results of this work, complete ethanol conversion and more than 40.0% COx-free hydrogen recovery were achieved.  相似文献   

15.
The redox balance and bacteriochlorophyll (Bchl) synthesis are both significant to hydrogen generation in photosynthetic bacteria. In this study, spbA and hupSL genes were knocked out from the genome of Rhodobacter sphaeroides HY01. The UV–vis spectra showed that the Bchl contents of spbA mutants were enhanced under photosynthetic conditions. The hydrogen yields of WH04 (hupSL) and WSH10 (spbA, hupSL) mutants increased by 19.4%, 21.8%, and the maximum hydrogen evolution rates increased by 29.9% and 55.0% respectively using glutamate as sole nitrogen source. The maximum hydrogen production rate of WSH10 was up to 141.9 mL/(L·h). The nifH expression levels of the mutants and the wild type supported the correlation between hydrogen production and nitrogenase activity. The results demonstrate that disruption of spbA in R. sphaeroides can partially derepress the ammonium inhibition in nitrogenase activity, and indicate that spbA is a negative regulator in nitrogenase synthesis in the presence of ammonium.  相似文献   

16.
A high-performance organosilica membrane was prepared via sol–gel processing for use in methylcyclohexane (MCH) dehydrogenation to produce high-purity hydrogen. The membrane showed a high H2 permeance of 1.29 × 10−6 mol m−2 s−1 Pa−1, with extremely high H2/C3H8 and H2/SF6 selectivities of 6680 and 48,900, respectively, at 200 °C. The extraction of hydrogen from the membrane reactor led to the MCH conversion higher than the thermodynamic equilibrium, with almost pure hydrogen obtained in the permeate stream without considering the effect of carrier gas and sweep gas in the membrane reactor, and the organosilica membrane reactor was very stable under the reaction conditions employed.  相似文献   

17.
Herein, a methane steam reforming (MSR) reaction was carried out using a Pd composite membrane reactor packed with a commercial Ru/Al2O3 catalyst under mild operating conditions, to produce hydrogen with CO2 capture. The Pd composite membrane was fabricated on a tubular stainless steel support by the electroless plating (ELP) method. The membrane exhibited a hydrogen permeance of 2.26 × 10?3 mol m2 s?1 Pa?0.5, H2/N2 selectivity of 145 at 773 K, and pressure difference of 20.3 kPa. The MSR reaction, which was carried out at steam to carbon ratio (S/C) = 3.0, gas hourly space velocity (GHSV) = 1700 h?1, and 773 K, showed that methane conversion increased with the pressure difference and reached 79.5% at ΔP = 506 kPa. This value was ~1.9 time higher than the equilibrium value at 773 K and 101 kPa. Comparing with the previous studies which introduced sweeping gas for low hydrogen partial pressure in the permeate stream, very high pressure difference (2500–2900 kPa) for increase of hydrogen recovery and very low GHSV (<150) for increase hydraulic retention time (HRT), our result was worthy of notice. The gas composition monitored during the long-term stability test showed that the permeate side was composed of 97.8 vol% H2, and the retentate side contained 67.8 vol% CO2 with 22.2 vol% CH4. When energy was recovered by CH4 combustion in the retentate streams, pre-combustion carbon capture was accomplished using the Pd-based composite membrane reactor.  相似文献   

18.
19.
In order to understand some limiting factors in microbial hydrogen fermentation we have examined hydrogen production by different strains of Escherichia coli grown in batch cultures under different limiting nutrient regimes. The effect of mutations in uptake hydrogenases, in lactate dehydrogenase (ldhA), and fhlA, coding for the regulator of formate hydrogen lyase (fhl) component synthesis, were studied. Each mutation contributed to a modest increase in hydrogen evolution and the effects were synergistic. Various elements were used as limiting nutrient. In batch experiments, limitation for sulfate was without great effect. There was some affect of limiting phosphate with yields approaching 1 mol per mol of glucose. However, strains showed the highest yield of hydrogen per glucose (∼22) when cultured at limiting concentrations of either ammonia or glucose.  相似文献   

20.
Recovery of heavier hydrocarbons, C2~C4 olefins and paraffins, from gas streams is of great importance economically. In this study, asymmetric carbon hollow fiber membranes (CHFMs) were prepared by a one-step vacuum-assisted dip coating and pyrolysis, and investigated for H2/CO2, H2/C2H6, and H2/C3H8 separations. To increase the mechanical strength of the CHFMs, a porous alumina hollow fiber with ID/OD = 2 mm/4 mm was used as the supporting material. A solution of polyetherimide in N-methyl-2-pyrrolidone was used as the casting solution. The effects of (1) membrane preparation parameters, (2) fiber packing densities, (3) fiber packing arrangement, and (4) gas flow configuration (inside-out or outside-in) on the gas-separation performance were also investigated. The results showed that decreasing the concentration of the casting dope and the number of coating cycles was found to be the most effective approach to increase the H2 permeance, while maintaining the H2/CO2 selectivity. Further, as the fiber packing density was increased from 5.54% to 38.78% for the hexagonal packing configuration, the H2 permeance increased from 362.04 GPU to 711.61 GPU, without any decrease in the gas selectivity. The as-prepared CHFM exhibited the maximum gas permeance of 711.61 GPU for H2 and the following gas selectivity: 2.79, 4.65, and 5.34 towards H2/CO2, H2/C2H6, and H2/C3H8, respectively. The successful preparation and modularization of the CHFM is advantageous and industrially relevant for several gas-separation applications, such as H2 energy production from CO2, C2H6, and C3H8, and olefins/paraffins recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号