共查询到20条相似文献,搜索用时 15 毫秒
1.
Different carbon nanofibre (CNF) based materials (parent, oxidized, and impregnated with a palladium loading of 1 wt.% using different procedures) have been tested for hydrogen storage at ambient pressure. Parent CNF are completely free of oxygen surface groups, whereas treatment in nitric acid increases mainly the amount of surface anhydrides groups. Add to the surface functionalization, the solvent employed in the palladium impregnation was also varied, using both aqueous and organic precursor solutions. Thermogravimetric analyses of the hydrogen adsorption–desorption cycles suggest that the presence of theses functional groups hinders the adsorption. Concerning the presence of palladium, its influence strongly depends on the previous activation of the surface and on the solvent used for the palladium addition. The use of aqueous precursors and functionalized CNFs leads to increases in the adsorption capacity close to 100% compared to the parent CNF (12.6 vs. 6.7 cm3/g). 相似文献
2.
Andrei G. Lipson Boris F. LyakhovEugenyi I. Saunin Lyudmila N. SolodkovaAslan Y. Tsivadze 《International Journal of Hydrogen Energy》2012
Hydrogen transport and loading into single-walled carbon nanotubes (SWCNT) encapsulated by thin Pd layers onto a massive Pd substrate were studied using a complex of vacuum thermal desorption, cyclic voltammetry and ESR methods. By adding SWCNT the hydrogen capacity of the Pd–SWCNT composite under electrochemical loading increases as much as 25% relative to Palladium metal alone. This provides moderate growth in the gravimetric capacity of the total composite based on a massive Pd substrate. The hydrogen binding energy in the SWCNT (eH = 0.075 eV/H-atom), estimated by studies of hydrogen transport in the Pd–SWCNT composite was lower than predicted for the Pd–SWCNT complex, but higher than the physisorption on the bare SWCNT. Using ESR we established that the Pd–Cx e-complexes formed at the wall of nanotube could be considered as hydrogen adsorption site, providing both high net gravimetric capacity and low hydrogen binding energy in the Pd encapsulated SWCNT. The results obtained provide an opportunity to probe a condensed hydrogen phase of nanometer scale confined in SWCNT, encapsulated by transition metals. 相似文献
3.
Hydrogen storage in cobalt-embedded ordered mesoporous carbon 总被引:1,自引:0,他引:1
Chen-Chia Huang Yi-Hua LiYen-Wen Wang Chien-Hung Chen 《International Journal of Hydrogen Energy》2013
Ordered mesoporous carbons (OMCs) were synthesized by using ordered mesoporous silica as a template, and chitosan as carbon precursors. A novel process of pre-impregnation is proposed to prepare cobalt-embedded OMC. This process is based on using cobalt chelated chitosan as carbon precursor. The surface functional groups and metal contents were determined by X-ray photoelectron spectroscopy. The bulk cobalt contents in the cobalt-embedded OMCs were measured by an atomic absorption spectrometer. The morphology of the OMCs was observed by small angle X-ray scattering analysis and transmission electron microscope. The OMC texture characteristics were determined by using nitrogen adsorption analysis. Hydrogen capacities of the OMCs were obtained by a volumetric method. The cobalt-embedded OMCs possess obviously higher hydrogen adsorption capacity than that of pure OMC. At 298 K and under 5.5 MPa, the hydrogen capacities of the OMC and OMC–Co-5 are 0.2 and 0.45 wt%, respectively. The H2/Co ratio of the hydrogen adsorbed on the OMC–Co-5 is 1.54 indicating a Kubas-type interaction between Co and H2. In addition, the hydrogen spillover effect might occur in parallel. 相似文献
4.
Hydrogen storage properties of carbon nanotubes (CNTs) modified by oxidative etching and decoration of Pd spillover catalysts are investigated. A mixed H2SO4/H2O2 solution containing ferrous ions (Fe2+) is useful to open the caps, to shorten the length, and to generate defects on CNTs. The Pd catalysts are deposited on the CNTs with the aid of supercritical carbon dioxide (scCO2); as a result, a highly dispersed Pd nanoparticles and an intimate connection between Pd and carbon surface can be obtained. Combination of the two approaches can optimize a hydrogen spillover reaction on CNTs, resulting in a superior hydrogen storage capacity of 1.54 wt% (at 25 °C and 6.89 MPa), which corresponds to an enhancement factor of ∼4.5 as compared to that of pristine CNTs. 相似文献
5.
M.Z. Figueroa-Torres C. Domínguez-Ríos J.G. Cabañas-Moreno O. Vega-Becerra A. Aguilar-Elguézabal 《International Journal of Hydrogen Energy》2012
This work presents the deposition of Ni nanoparticles on a potassium hydroxide (KOH) activated carbon (AC) support by an electroless deposition (ED) technique without using sensitization and activation surface pretreatments. The hydrogen storage properties of Ni-activated carbon nanocomposites (Ni/AC) were investigated at room temperature and under moderate pressure. The chemical composition, morphology and textural parameters are characterized using an inductively coupled plasma spectrometer (ICP), scanning and transmission electron microscopy (SEM and TEM) and N2 adsorption isotherms. Fine and well-dispersed Ni nanoparticles were obtained by ED that had spherical shape with an average size of 5 nm. The hydrogen storage capacity of the AC can be improved through Ni loading; which results in a hydrogen storage enhancement factor of two compared with the Ni-free AC. This enhancement factor is due to the greater interactions between the Ni and the AC, which facilitate the hydrogen spillover mechanism. 相似文献
6.
Sami-ullah Rather Naik Mehraj-ud-dinRenju Zacharia Sang Woon HwangAe Rahn Kim Kee Suk Nahm 《International Journal of Hydrogen Energy》2009
Hydrogen uptake study of carbon nanotubes (CNTs) impregnated with TiO2-nanorods and nanotubes has been performed at room temperature and moderate hydrogen pressures of 8–18 atm. Under hydrothermal synthesis conditions, nanorods (NRs) and nanoparticles (NPs) are found to form either of the two polymorphic phases, i.e., nanorods are formed of predominantly anatase phase while nanoparticles are formed of rutile phase. NRs and NPs are introduced into the CNT matrix via the wetness-impregnation method. These composites store up to 0.40 wt.% of hydrogen at 298 K and 18 atm, which is nearly five times higher the hydrogen uptake of pristine CNTs. The excess amount of hydrogen stored in TiO2-impregnated CNTs is determined from the amount of TiO2 in the sample and the measured hydrogen uptake of TiO2 nanoparticles. Higher hydrogen uptake of NP-impregnated CNTs when compared pristine CNTs is accounted for by considering initial binding of hydrogen on TiO2 and subsequent spillover in CNT–TiO2-NPs. 相似文献
7.
In this work, the hydrogen storage behaviors of multi-walled carbon nanotubes (MWNTs) loaded by crystalline platinum (Pt) particles were studied. The microstructure of the Pt/MWNTs was characterized by X-ray diffraction and transmission electron microscopy. The pore structure and total pore volumes of the Pt/MWNTs were analyzed by N2/77 K adsorption isotherms. The hydrogen storage capacity of the Pt/MWNTs was evaluated at 298 K and 100 bar. From the experimental results, it was found that Pt particles were homogeneously distributed on the MWNT surfaces. The amount of hydrogen storage capacity increased in proportion to the Pt content, with Pt-5/MWNTs exhibiting the largest hydrogen storage capacity. The superior amount of hydrogen storage was linked to an increase in the number of active sites and the optimum-controlled micropore volume for hydrogen adsorption due to the well-dispersed Pt particles. Therefore, it can be concluded that Pt particles play an important role in hydrogen storage characteristics due to the hydrogen spillover effect. 相似文献
8.
9.
V.A. Vons H. Leegwater W.J. Legerstee S.W.H. Eijt A. Schmidt-Ott 《International Journal of Hydrogen Energy》2010
Palladium nanoparticles of ∼4 nm were synthesized using spark discharge generation, and their hydrogen storage properties were determined using both thermal desorption spectroscopy (TDS) and Sievert’s (PCT) measurements. PCT measurements indicate that the thermodynamic properties of the nanoparticles towards hydrogen storage differ significantly from that of bulk Pd, even after sintering of the crystallites to 24 nm as determined using X-ray diffraction (XRD). Both the enthalpy and entropy of hydrogen absorption and desorption differ from bulk values, resulting in less hysteresis between absorption and desorption equilibrium plateau pressures and a lowering of the critical temperature of hydride formation Tc by approximately 100 K. The TDS measurements indicate a transition from diffusion to surface-barrier limited hydrogen desorption when going from Pd foil to Pd nanoparticles. This results in a strong decrease in the hydrogen thermal desorption temperatures by ∼160 K during TDS. These results indicate that spark discharge is an interesting method for metal hydride nanoparticle generation. 相似文献
10.
The effects of different amounts palladium loading on the hydrogen sorption characteristics of double-walled carbon nanotubes (DWCNTs) have been investigated. The physical properties of the pristine DWCNTs and Pd/DWCNTs were systematically characterized by X-ray diffraction, transmission electron microscopy, and Brunauer–Emmett–Teller surface area measurements. Pd nanoparticles were loaded on DWCNT surfaces for the dissociation of H2 into atomic hydrogen, which spills over to the defect sites on the DWCNTs. When we use different Pd content, the particle size and dispersion will be different, which affects the hydrogen storage capacity of the DWCNTs. In this work, the hydrogen storage capacities were measured at ambient temperature and found to be 1.7, 1.85, 3.0, and 2.0 wt% for pristine DWCNTS, 1.0 wt%Pd/DWCNTs, 2.0 wt%Pd/DWCNTs, and 3.0 wt%Pd/DWCNTs, respectively. We found that the hydrogen storage capacity can be enhanced by loading with Pd nanoparticles and selecting a suitable content. Furthermore, the sorption can be attributed to the chemical reaction between the atomic hydrogen and the dangling bonds of the DWCNTs. 相似文献
11.
Vicente Jiménez Ana Ramírez-Lucas Paula Sánchez José Luís Valverde Amaya Romero 《International Journal of Hydrogen Energy》2012
The hydrogen adsorption capacity of different types of carbon nanofibers (Platelet, Fishbone and Ribbon) and amorphous carbon has been measured as a function of pressure and temperature. Results have showed as the more graphitic/ordered carbon materials adsorbed less hydrogen than the more amorphous ones. After that and, with the aim of improve the hydrogen adsorption capacity of these carbon materials, they were functionalizated (oxygen surface groups incorporation) and Ni-modificated. Results also showed an important increase of the H2 adsorption capacity despite the porosity loss that took place after the treatments. Due to the advantages of functionalization and Ni-modification, both treatments were applied at the same time over the most promising carbon materials from the H2 adsorption point of view, observing again an improvement of the hydrogen adsorption capacity. Finally, the H2 adsorption capacity of chemically activated carbon materials increased considerably due the pore structure development and even more if activated materials were Ni-modificated. 相似文献
12.
I. López-Corral E. Germán M.A. Volpe G.P. Brizuela A. Juan 《International Journal of Hydrogen Energy》2010
In this work we report a theoretical study on the atomic and molecular hydrogen adsorption onto Pd-decorated graphene monolayer and carbon nanotubes by a semi-empirical tight-binding method. We first investigated the preferential adsorption geometry, considering different adsorption sites on the carbon surface, and then studied the evolution of the chemical bonding by evaluation of the overlap population (OP) and crystal orbital overlap population (COOP). Our results show that strong C–Pd and H–Pd bonds are formed during atomic hydrogen adsorption, with an important role in the bonding of C 2pz and Pd 5s, 5pz and 4dz2 orbitals. The hydrogen storage mechanism in Pd-doped carbon-based materials seems to involve the dissociation of H2 molecule on the decoration points and the bonding between resultant atomic hydrogen and the carbon surface. 相似文献
13.
We report a density functional calculation of the adsorption of molecular hydrogen on the external surface of coiled carbon nanotube (CCNT). Binding energies of single molecule have been studied as a function of three different orientations and at three different sites like hexagon, pentagon and heptagon. The binding energy values are larger than linear (5,5) armchair nanotube, which has approximately same diameter as that of coiled carbon nanotube. The curvature and topology of CCNT are responsible for this considerable enhancement. The system with full coverage is also studied. When the nanotube surface is fully covered with one molecule per graphitic hexagon, pentagon and heptagon gives the 6.8 wt% storage capacity. The binding energy per molecule decreases due to repulsive interactions between neighbor molecules. It gives good storage medium for hydrogen. Almost it meets the DOE target. 相似文献
14.
Density functional calculations have been carried out to investigate the interaction of hydrogen molecules with Li-doped charged single-walled carbon nanotubes (SWNTs). The results show that binding of H2 on positively charged Li-doped SWNTs is enhanced compared with that on uncharged systems. As the charge of the Li-doped SWNTs increases, the binding energy of H2 increases with the largest binding energy of 0.26 eV. The reason for the increase in H2 binding energy is that the positively charged tube improves the charge transfer from Li atom to the tube and make the Li atom more ionized, which strengthens the polarization interaction between H2 and Li atom. 相似文献
15.
The effects of different reductants for palladium loading on the hydrogen sorption characteristics of double-walled carbon nanotubes (DWCNTs) have been investigated. Pd nanoparticles were loaded on DWCNT surfaces for dissociation of H2 into atomic hydrogen, which spills over to the defect sites on the DWCNTs. When we use different reductants, the reduction capabilities and other effects of the different reductants are different, which affects the hydrogen storage capacity of the DWCNTs. In this work, the amount of hydrogen storage capacity was determined (by AMC Gas Reactor Controller) to be 1.7, 2.0, 2.55, and 3.0 wt% for pristine DWCNTS and for 2.0%Pd/DWCNTs using H2, l-ascorbic acid, and NaBH4 as reductants, respectively. We found that the hydrogen storage capacity can be enhanced by loading with 2% Pd nanoparticles and selecting a suitable reductant. Furthermore, the sorption can be attributed to the chemical reaction between atomic hydrogen and the dangling bonds of the DWCNTs. 相似文献
16.
D. Giasafaki G. CharalambopoulouCh. Tampaxis A. StubosTh. Steriotis 《International Journal of Hydrogen Energy》2014
Decoration with transition metal catalysts has been reported to enhance H2 storage capacity of carbon materials at ambient temperature. Furthermore, it has been proposed that surface oxygen groups may improve the process. In this study, a carbon molecular sieve was subjected to controlled oxidation and consequent doping with Pd nanoparticles. The H2 sorption performance of the pristine and oxidized, undoped and doped materials was examined at 298 K up to 20 bar. It was found that the non-oxidized carbon-Pd composite did not show any spillover based sorption increase. On the other hand the oxidized samples reveal a slight enhancement that could be attributed to a weak chemisorption process initiated by the so-called ‘‘spillover’’ effect. Overall, the contribution of spillover to the total hydrogen storage capacity of this system (under the conditions studied) was not found to be of great significance. 相似文献
17.
This paper describes investigations (a) on the efficacy of Ti layer as a barrier against the intermixing of Pd and Mg in Pd/Ti/Mg films and (b) the hydrogen storage characteristics of the tri-layered films and the related bulk composites. The Mg film was prepared by resistive evaporation while the Pd and Ti films were deposited by e-beam evaporation. The analysis by Rutherford backscattering spectrometry (RBS) and glancing-incidence X-ray diffraction (GI-XRD) of the Pd/Ti/Mg/Si(substrate) films annealed in vacuum in 348–573 K temperature range revealed that Ti effectively prevents the intermixing of Pd and Mg up to ~523 K. However, mixing across Pd/Ti, Ti/Mg and Mg/Si interfaces commences around 523 K that progresses with the temperature of annealing though PdMg phases are not formed even at 573 K. The as-deposited Pd/Ti/Mg films are hydrogenated to ~7 wt % (62 at%) at 323–423 K at 0.15 MPa hydrogen pressure and dehydrogenated completely at ~ 473 K. The extent of (de)hydrogenation of the films was determined non-destructively by the 1H(19F,αγ)16O nuclear reaction. The powder composites derived from the films, on the other hand, reversibly stored ~2.2 wt% hydrogen up to 18 cycles in 323–473 K temperature range. The superior cyclic stability is attributed to the inhibition of mixing between Pd and Mg and, as a result, the formation of PdMg inter-metallics by titanium. 相似文献
18.
Chien-Hung Chen Tsui-Yun Chung Chin-Chang Shen Ming-Sheng Yu Cheng-Si Tsao Gia-Nan Shi Chen-Chia Huang Ming-Der Ger Wen-Lung Lee 《International Journal of Hydrogen Energy》2013
In this study a two-dimensional graphene sheet (GS) doped with palladium (Pd) nanoparticles was physically mixed with a superactivated carbon (AC) receptor and used as a hydrogen adsorbent. The hydrogen adsorption/desorption isotherm of the Pd-doped GS catalyst/AC composite (Pd-GS/AC) is determined using a static volumetric measurement at room temperature (RT) and pressure up to 8 MPa. The experiments show that the H2 uptake capacity of 0.82wt.% for Pd-GS/AC is obviously enhanced, measuring 49% more than the 0.55wt.% for Pd-free GS/AC at RT and 8 MPa. Highly reversible behavior of Pd-GS/AC is also observed. Moreover, the isosteric heat of adsorption for Pd-GS/AC (−14 to −10 kJ/mol) is higher than that for pristine AC (−8 kJ/mol). An increase in H2 uptake in the Pd-GS/AC suggests the occurrence of a relatively strong interaction between the spilt-over H and the receptor sites due to the spillover effect. 相似文献
19.
W.-C. Xu K. Takahashi Y. Matsuo Y. Hattori M. Kumagai S. Ishiyama K. Kaneko S. Iijima 《International Journal of Hydrogen Energy》2007
Hydrogen storage capacity of various carbon materials, including activated carbon (AC), single-walled carbon nanohorn, single-walled carbon nanotubes, and graphitic carbon nanofibers, was investigated at 303 and 77 K, respectively. The results showed that hydrogen storage capacity of carbon materials was less than 1 wt% at 303 K, and a super activated carbon, Maxsorb, had the highest capacity (0.67 wt%). By lowering adsorption temperature to 77 K, hydrogen storage capacity of carbon materials increased significantly and Maxsorb could store a large amount of hydrogen (5.7 wt%) at a relatively low pressure of 3 MPa. Hydrogen storage capacity of carbon materials was proportional to their specific surface area and the volume of micropores, and the narrow micropores was preferred to adsorption of hydrogen, indicating that all carbon materials adsorbed hydrogen gas through physical adsorption on the surface. 相似文献
20.
Karolina Wenelska Beata Michalkiewicz Jiang Gong Tao Tang Ryszard Kaleńczuk Xuecheng Chen Ewa Mijowska 《International Journal of Hydrogen Energy》2013
A novel in situ synthesis of Pd nanoparticles supported in hollow carbon spheres (HCS) is reported. The size of the nanoparticles can be tuned via application of different Pd precursors. The hydrogen storage properties of Pd supported in HCS under room temperature were examined at partial pressures. We observed significant difference between the storage capacities of two samples containing Pd nanoparticles with different diameter distributions. The results showed that the sample with suitable diameters of Pd nanoparticles was more favorable for the H2 storage, even lower mass of Pd was used. The maximum hydrogen storage of 0.36 wt % exhibited the sample with Pd nanoparticles with the diameter of 11 nm (measured at 298 K and 24 bar) and it was enhanced by the factor of two in respect to the pristine HCS. The enhanced storage capacity is due to cumulative hydrogen adsorption by HCS and Pd nanoparticles. We also propose the mechanism of hydrogen storage in our material. 相似文献