首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main goal of this work is to realize a PEMFC model that can be used efficiently for the global modelling of the fuel cell system. The modelling method proposed in the paper is an approach from an empirical point of view that allows a PEMFC model of “black-box” class to be developed. Moving least squares (MLS) have therefore been employed to approximate the cell voltage characteristics V, using an experimental dataset measured in determinate conditions. The MLS approach appears to present a good balance of response surface accuracy, smoothness, robustness, and ease of use. This kind of numerical model offers good perspectives for the systems identification, the simulation of the systems, the design and the optimization of process control, etc. The results prove that the method is suitable for predicting and describing the fuel cell behaviour in all the points of the approximation domain. The proposed model can be included in a numerical application to optimize the operation of an existing fuel cell system.  相似文献   

2.
In this paper, voltage sensors were developed to explore the voltage distribution characteristics inside the fuel cell under both steady and transient states. The effects of air stoichiometry and current density on the voltage distribution under steady state were discussed, and the dynamic voltage response due to the load change under transient state was also investigated. Results showed that under transient state, the fuel cell would experience a temporary voltage fluctuation due to the air starvation. Thus could probably lead to the degradation of materials, such as the catalyst, membrane, etc. To lessen the degree of air starvation, a method of pre-supplying certain amount of air before loading was adopted. The relationship between the voltage response at the loading transient and the amount of pre-supplied air was also studied, and a minimum value of the pre-supplied air was obtained. The experimental results of this paper could be applied to the optimization of vehicular fuel cell system.  相似文献   

3.
This paper is to experimentally and numerically investigate the cell performance and the localized characteristics associated with a high-temperature proton exchange membrane fuel cell (PEMFC). Three experiments are carried out in order to study the performance of the PEMFC with different operating conditions and to validate the numerical simulation model. The model proposed herein is a three-dimensional (3-D) computational fluid dynamics (CFD) non-isothermal model that essentially consists of thermal–hydraulic equations and electrochemical model. The performance curves of the PEMFC predicted by the present model agree with the experimental measured data. In addition, both the experiments and the predictions precisely demonstrate the enhanced effects of inlet gas temperature and system pressure on the PEMFC performance. Based on the simulation results, the localized characteristics within a PEMFC can be reasonably captured. These parameters include the fuel gas distribution, liquid water saturation distribution, membrane conductivity distribution, temperature variation, and current density distribution etc. As the PEMFC is operated at the higher current density, the fuel gas would be insufficiently supplied to the catalyst layer, consequently causing the decline in the generation of power density. This phenomenon is so called mass transfer limitation, which can be precisely simulated by the present CFD model.  相似文献   

4.
A small air-breathing proton exchange membrane fuel cell with a cylindrical configuration (Cy-PEMFC) and a helical flow-channel was developed to provide a uniform contact pressure to the membrane electrode assembly (MEA) with a thin cathode current collector. A comparison of the contact pressure and performance of the Cy-PEMFC and general planar PEMFC was performed to determine the effect of the cylindrical configuration. For the contact pressure comparison, numerical analysis was performed using commercial software. Numerical analysis showed that the Cy-PEMFC has its own structural advantage of changing the applied clamping pressure to a uniformly distributed contact pressure. The actual pressure measurements were carried out with pressure-sensitive film to support results of numerical analysis. These results also showed that the Cy-PEMFC had a uniformly distributed contact pressure, whereas the planar PEMFC did not. The polarization curves of both PEMFCs were measured to determine the performance variations caused by the uniform contact pressure and better mass transfer. The maximum power density of the Cy-PEMFC was 220 mW/cm2, which was approximately 24% higher than the planar PEMFC.  相似文献   

5.
In order to study the changing regularity of proton exchange membrane fuel cell (PEMFC) performance in the aging process under load cycling condition and improve the durability of fuel cell, the orthogonal experiment method was introduced. In this paper, three-factor and three-level orthogonal experiments were set up to study the influence of upper potential limit (UPL), lower potential limit (LPL) and period of the load cycle on the degradation rate of fuel cell. The test results show that under variable load cycling conditions, the fuel cell performance decays first fast and then slowly. The degradation rate after hundreds of hours of load cycling experiment is usually less than 50% of that of the fresh fuel cell. The dominant factor which effect the degradation mostly significantly changes during the whole aging process. According to the influence degree of three factors on performance degradation rate, the degradation process can be divided into three stages: the UPL dominating stage, the LPL dominating stage and the slow decay stage. In order to mitigate the performance degradation, the UPL in the optimal combination should be as low as possible at all the three stages. The optimized parameters can reduce the degradation rate by more than 50%. The load cycling condition should be avoided at the initial stage after the fuel cell is put into use. And the lifespan of aged fuel cell because of loading cycling can be prolonged through work more under the conditions which will not lead to serious activation potential loss and ECSA loss.  相似文献   

6.
The modeling of proton exchange membrane fuel cells (PEMFC) may work as a powerful tool in the development and widespread testing of alternative energy sources in the next decade. In order to obtain a suitable PEMFC model, which can be used in the analysis of fuel cell-based power generation systems, it is necessary to define the values of a specific group of modeling parameters. In this paper, the authors propose a dynamic model of PEMFC, the originality of which lays on the use of non-integer derivatives to model diffusion phenomena. This model has the advantage of having least number of parameters while being valid on a wide frequency range and allows simulating an accurate dynamic response of the PEMFC.

In this model, the fuel cell is represented by an equivalent circuit, whose components are identified with the experimental technique of electrochemical impedance spectroscopy (EIS). This identification process is applied to a commercially available air-breathing PEMFC and its relevance is validated by comparing model simulations and laboratory experiments. Finally, the dynamic response derived from this fractional model is studied and validated experimentally.  相似文献   


7.
8.
In this paper, the effect of the wall roughness on the water behavior related to the PEMFCs gas channel is investigated by the two-phase flow simulation. And, the different wetting conditions of the wall surface are considered, i.e. hydrophilic surface and hydrophobic surface. The relative roughness height and the roughness element density as well as the roughness element type are also considered in the study. And the results show: (1) for hydrophilic surface, water behavior for smooth case is different from the roughness cases, due to the effect of roughness on the water slug morphology even for r/H = 0.2% roughness. (2) r/H = 0.2% is positive for water removal and will not lead to the high pressure drop for hydrophilic surface, (3) r/H = 5% is advantageous for water removal for hydrophilic surface but disadvantageous for hydrophobic case, and the pressure drop greatly increases for both cases, (4) for hydrophobic surface, roughness of r/H = 1% and r/H = 2% slow down the water removal speed, but will not affect the amount of the removable water, (5) there is nearly no effect for r/H = 0.2% for hydrophobic case, (6) for both conditions, the average pressure drop obviously increases when r/H ≥ 2%. (7) Increase of the roughness element can help water removal for hydrophilic case but no obvious function for hydrophobic surface. (8) The triangle roughness element is better than rectangle element with the same height.  相似文献   

9.
刘杰  罗马吉 《能源研究与信息》2007,23(3):159-164,178
通过建立质子交换膜燃料电池稳态模型,考察了电堆温度和反应压力对电堆性能的影响。仿真结果表明,升高电堆温度使得氢气分压和氧气分压下降,但氢气分压下降的更快;在电堆工作温度范围内,电堆温度升高,热动力电势、欧姆极化电势和活化极化电势均下降,但电堆总输出电压上升;提高阴极侧压力有利于提高热动力电势,同时使得活化极化电势降低,有利于电堆整体性能的改善;提高阳极侧压力对电堆性能改善影响不大。  相似文献   

10.
In the present paper, a proton exchange membrane fuel cell (PEMFC) using 20 wt.% Pt/C as anode and cathode catalysts, and ambient air at cathode was operated at a current density of 160 mA cm−2 for 2250 h. The measurement results showed that electrochemically active specific areas (SEAS) of both electrode catalysts calculated from CV curves after test evidently decreased. The decay rate of SEAS of anode catalyst was much lower than that of cathode one. X-ray diffraction (XRD), energy dispersive analysis of X-ray (EDAX), and X-ray photoelectron spectrometry (XPS) were employed to characterize the anode and cathode catalysts before and after the life test. The XRD results showed that their crystal structures were perfect, the particle size of new Pt/C catalyst was about 2.5 nm, however, the particle sizes of anode and cathode ones markedly increased, and were about 4.9 nm and 6.8 nm, respectively, after the life test. Furthermore, the size of cathode catalyst was much bigger than that of anode one after test. The Pt element was also found in Nafion® film as shown in EDAX result. The XPS results presented that the content of Pt oxidation states in cathode was much more than that in anode, and the corrosion of carbon support in cathode was also more severe than that in anode after the life test. The experimental results indicated that the increase of particle size of Pt/C catalyst was illustrated with the dissolution/redeposition mechanism. The degradation of cathode catalyst for oxygen electroreduction was one of the main factors affecting on the performance decay of PEMFC.  相似文献   

11.
Fuel cells for automobile application need to operate in a wide temperature range including freezing temperature. However, the rapid startup of a proton exchange membrane fuel cell (PEMFC) at subfreezing temperature, e.g., −20 °C, is very difficult. A cold-start procedure was developed, which made hydrogen and oxygen react to heat the fuel cell considering that the FC flow channel was the characteristic of microchannel reactor. The effect of hydrogen and oxygen reaction on fuel cell performance at ambient temperature was also investigated. The electrochemical characterizations such as IV plot and cyclic voltammetry (CV) were performed. The heat generated rate for either the single cell or the stack was calculated. The results showed that the heat generated rate was proportional to the gas flow rate when H2 concentration and the active area were constant. The fuel cell temperature rose rapidly and steadily by controlling gas flow rate.  相似文献   

12.
The aim of this study is to investigate the thermal response characteristics of the proton exchange membrane fuel cell stack. In order to find out the regularities of temperature variation under rapidly increasing load change, a home-made 500 W open-cathode stack embedded with 30 thermocouples was made and tested. The result shows that the local temperature dominates the thermal response at the initial stage while the membrane hydration is the crucial impact factor at low power stage. Further, the anode flooding strongly affects the stability of the output performance and the change of temperature at the overloaded stage. The maximum temperature difference within one cell can reach a steady state faster than that of the temperature. At normal operation, there is little difference between the defined surfaces. The exergy analysis shows that the reaction air will have higher exergy if the temperature variation is more smooth. This experimental study contributes to the optimization of the cooling strategy and thermal management of the open-cathode stack in application.  相似文献   

13.
The distribution of the gas flow in a PEMFC stack is of paramount importance to the stack's performance and lifetime. Uneven flow distribution influences the flow rate through each cell, which in turn causes uneven distribution of the current flow of the entire cell stack and ultimately reduces the performance of the fuel cell stack. In this work, different simulation methods are compared, and large eddy simulations are selected to investigate the flow characteristics in a model stack and study the effects of operating conditions on flow sharing. The simulation results indicate different flow patterns in the inlet header and outlet header; the former features a turbulent entrance region that progressively transits to a laminar region, whereas the latter exhibits a complex flow with jets mixing downstream. Moreover, the flow patterns and distributions for different inlet/outlet configurations, i.e., U-type and Z-type, are investigated. The distribution of the flow through the unit cells for both configurations is different. The Z-type arrangement offers a more uniform flow distribution and has a smaller number of fluctuations than the U-type. The effects of different inlet flow velocity and jet inflow pattern are also studied. The findings from this work can provide guidelines to improve header design.  相似文献   

14.
The present paper aims at investigating the main sources of irreversibility in a Proton Exchange Membrane Fuel Cell (PEMFC) using a Fermat spiral as flow distributor and also to direct possible improvements in its design. The numerical analysis is based on a finite volume technique with a SIMPLE algorithm as numerical procedure. In order to have a more complete and rigorous analysis a new dimensionless parameter is proposed here. The parameter represents the ratio of the entropy generation due to mass transfer to the total entropy generation is proposed here. Results demonstrate that the main sources of irreversibility in a fuel cell are the concentration losses for the most part of the operational domain, whereas the heat transfer effect is not dominant.  相似文献   

15.
质子交换膜燃料电池的开发应用   总被引:1,自引:0,他引:1  
王正 《能源技术(上海)》2005,26(5):213-214,219
质子交换膜燃料电池(PEMFC)作为一种新一代的发电技术,已成为世界各国特别是发达国家的研发重点被纳入发展规划,应用领域从特殊应用到商品化、产业化不断开拓.但PEMFC的产业化和推广应用受关键材料和工艺技术的制约,为了加速我国PEMFC的发展,今后必须投入足够的财力,组织相关学科的人才,制定可行的规划,加大科研力度.  相似文献   

16.
The operations of fuel cell stacks in fuel cell vehicle are dynamic. During dynamic loading, the oxidant starvation often occurs, due to the gas response rate lagging the loading rate. To study the transient behavior of the fuel cell stack at load changes, the measuring methods of current and temperature distribution are developed. In this paper, the current distribution and temperature distribution as well as their dynamic changes in fuel cell stack have been evaluated in situ. The experimental results show that the local current and temperature rise when load rapidly. The extent of temperature fluctuation during dynamic loading is significantly influenced by air stoichiometries, loading rates, and air relative humidities. When air stoichiometry is very low, the temperature of cathode inlet rises sharply. The quicker the loading rate is, the bigger the extent of temperature fluctuation is. With increasing air relative humidity, the transient temperature of cathode inlet rises, while the transient temperature of cathode outlet decreases. This paper will provide reference for durability researches on fuel cell vehicles (FCVs).  相似文献   

17.
The fuel cell performance of a composite PBI-based membrane with TiO2 has been studied. The behaviour of the membrane has been evaluated by comparison with the fuel cell performance of other PBI-based membranes, all of which were cast from the same polymer with the same molecular weight. The PBI composite membrane incorporating TiO2 showed the best performance and reached 1000 mW cm−2 at 175 °C. Moreover, this new titanium composite PBI-based membrane also showed the best stability during the preliminary long-term test under our operation conditions. Thus, the slope of the increase in the ohmic resistance of the composite membrane was 0.041 mΩ cm2 h−1 and this is five times lower than that of the standard PBI membrane. The increased stability was due to the high phosphoric acid retention capacity - as confirmed during leaching tests, in which the Ti-based composite PBI membrane retained 5 mol of H3PO4/PBI r.u. whereas the PBI standard membrane only retained 1 mol H3PO4/PBI r.u. Taking into account the results obtained in this study, the TiO2-PBI based membranes are good candidates as electrolytes for high temperature PEMFCs.  相似文献   

18.
In this study, the simulation of a fuel cell stack is performed by applying a general numerical model with VOF method that has been successfully applied to single PEMFC model to investigate the fluid dynamics, mass transport, flooding phenomenon and the effects of liquid water on the stack performance. The performance of three single cells in series connection in the fuel cell stack is examined according to the presence of liquid water in different single cells. The distributions of fluid flow, species concentration and the current density are presented to illustrate the effects of liquid water on the performance of each single cell. The numerical results locate that the low distributions of species in the flooding cell certainly degrade the performance of this cell. Moreover, it can be seen that the performance of the flooding cell will significantly affect the whole stack performance since the values of average current density must be identical in all single cells.  相似文献   

19.
In this study, a mathematical model is established to simulate the cold start of fuel cell, including the calculation of the temperature distribution and heat exchange. Moreover, a novel cold-start mode is designed and compared with the constant and linear current cold-start modes. It uses the ice volume and heat absorbed by the membrane as fuzzy control inputs and outputs current density. Compared with other modes at 263 K, the cold startup time is shortened by 25.6–41.6 s, and the ice volume fraction is reduced by 29.4%–31.8%. Only the proposed mode achieves a successful cold start at a lower temperature. Also, the proposed mode has better thermal behavior, as indicated by the temperature distribution diagrams. Furthermore, to avoid performance degradation caused by cold starts, an inertia link is added to the controller, so that the current amplitude is reduced by 7.98%, and the maximum change rate by 57.44%.  相似文献   

20.
A two-phase, one-dimensional steady model is developed to analyze the coupled phenomena of cathode flooding and mass-transport limiting for the porous cathode electrode of a proton exchange membrane fuel cell. In the model, the catalyst layer is treated not as an interface between the membrane and gas diffusion layer, but as a separate computational domain with finite thickness and pseudo-homogenous structure. Furthermore, the liquid water transport across the porous electrode is driven by the capillary force based on Darcy's law. And the gas transport is driven by the concentration gradient based on Fick's law. Additionally, through Tafel kinetics, the transport processes of gas and liquid water are coupled. From the numerical results, it is found that although the catalyst layer is thin, it is very crucial to better understand and more correctly predict the concurrent phenomena inside the electrode, particularly, the flooding phenomena. More importantly, the saturation jump at the interface of the gas diffusion layer and catalyst layers is captured, when the continuity of the capillary pressure is imposed on the interface. Elsewise, the results show further that the flooding phenomenon in the CL is much more serious than that in the GDL, which has a significant influence on the mass transport of the reactants. Moreover, the saturation level inside the cathode is determined, to a great extent, by the surface overpotential, the absolute permeability of the porous electrode, and the boundary value of saturation at the gas diffusion layer-gas channel interface. In order to prevent effectively flooding, it should remove firstly the liquid water accumulating inside the CL and keep the boundary value of liquid saturation as low as possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号