首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of Ni/SiO2 catalysts containing different amounts of Gd2O3 promoter was prepared, characterized by H2-adsorption and XRD, and used for carbon dioxide reforming of methane (CRM) and methane autothermal reforming with CO2 + O2 (MATR) in a fluidized-bed reactor. The results of pulse surface reactions showed that Ni/SiO2 catalysts containing Gd2O3 promoter could increase the activity for CH4 decomposition, and Raman analysis confirmed that reactive carbon species mainly formed on the Ni/SiO2 catalysts containing Gd2O3 promoter. In this work, it was found that methane activation and reforming reactions proceeded according to different mechanisms after Gd2O3 addition due to the formation of carbonate species. In addition, Ni/SiO2 catalysts containing Gd2O3 promoter demonstrated higher activity and stability in both CRM and MATR reactions in a fluidized bed reactor than Ni/SiO2 catalysts without Gd2O3 even at a higher space velocity.  相似文献   

2.
Ni catalysts supported on different carriers like δ,θ-Al2O3, MgAl2O4, SiO2–Al2O3 and ZrO2–Al2O3 were prepared. The solids were characterized by chemical analysis, N2 adsorption–desorption isotherms, X-ray powder diffraction, UV–vis diffuse reflectance spectroscopy, temperature-programmed reduction, high-resolution transmission electron microscopy and temperature-programmed oxidation. The catalytic properties of the samples were evaluated in the reaction of reforming of methane with CO2 at 923 K. It was shown that this kind of support greatly affects the structure and catalytic performance of the catalysts. Ni catalyst supported on MgAl2O4 showed the highest activity and stability due to the presence of small well dispersed Ni particles with size of 5.1 nm. It was shown that the lowest activity of Ni catalyst supported on SiO2–Al2O3 oxide was caused by the agglomeration of nickel particles and formation of filamentous carbon under reaction conditions detected by the high resolution transmission electron microscopy.  相似文献   

3.
Ni/xPr-Al2O3 (x = 5, 10, 15, 20 wt%) catalysts with an application in autothermal reforming of methane were prepared by sequential impregnation synthesis; its catalytic performance was evaluated and compared with that of Ni/γ-Al2O3 catalyst; the physicochemical properties of the catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The results showed that Pr addition promoted the reduction of nickel particle size on the surface. TPR experiments suggested a heterogeneous distribution of nickel oxide particles over xPr-Al2O3 supports and the promotion of NiO reduction by Pr modification. The CH4 conversion increased with elevating levels of Pr addition from 5% to 10%, then decreased with Pr content from 10% to 20%. For the stability catalytic tests, Ni/xPr-Al2O3 catalysts maintained the high activity after 48 h while Ni/Al2O3 had a significant deactivation.  相似文献   

4.
The stability of Mn-promoted Ni/SiO2 catalyst for methane CO2 reforming was investigated comparatively to that of Zr-promoted Ni/SiO2. The catalysts were prepared by the same impregnation method with the same controlled promoter contents and characterized by TPR, XRD, TG, SEM, XPS and Raman techniques. The addition of Mn to Ni/SiO2 catalyst promoted the dispersion of Ni species, leading to smaller particle size of NiO on the fresh Ni–Mn/SiO2 catalyst and the formation of NiMn2O4, which enhanced the interaction of the modified support with Ni species. Thus, the Ni–Mn/SiO2 catalyst showed higher activity and better ability of restraining carbon deposition than Ni/SiO2 catalyst. Besides, it exhibited stable activity at reaction temperatures over the range from 600 °C to 800 °C. However, the introduction of Zr increased the reducibility of Ni–Zr/SiO2, and the catalyst deactivated much more dramatically when the reaction temperature decreased due to its poor ability of restraining carbon deposition, and its activity decreased monotonically with time on stream at 800 °C.  相似文献   

5.
Ni/xY2O3–Al2O3 (x = 5, 10, 15, 20 wt%) catalysts were prepared by sequential impregnation synthesis. The catalytic performance for the autothermal reforming of methane was evaluated and compared with Ni/γ-Al2O3 catalyst. The physicochemical properties of catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The decrease of nickel particle size and the change of reducibility were found with Y modification. The CH4 conversion increased with elevating levels of Y2O3 from 5% to 10%, then decreased with Y content from 10% to 20%. Ni/xY2O3–Al2O3 catalysts maintained high activity after 24 h on stream, while Ni/Al2O3 had a significant deactivation. The characterization of spent catalysts indicated that the addition of Y retarded Ni sintering and decreased the amount of coke.  相似文献   

6.
A series of Y2O3-promoted NiO/SBA-15 (9 wt% Ni) catalysts (Ni:Y weight ratio = 9:0, 3:1, 3:2, 1:1) were prepared using a sol–gel method. The fresh as well as the catalysts used in CO2 reforming of methane were characterized using N2-physisorption, XRD, FT-IR, XPS, UV, HRTEM, H2-TPR, O2-TPD and TG techniques. The results indicate that upon Y2O3 promotion, the Ni nanoparticles are highly dispersed on the mesoporous walls of SBA-15 via strong interaction between metal ions and the HO–Si-groups of SBA-15. The catalytic performance of the catalysts were evaluated at 700 °C during CH4/CO2 reforming at a gas hourly space velocity of 24 L gcat−1 h−1(at 25 °C and 1 atm) and CH4/CO2molar ratio of 1. The presence of Y2O3 in NiO/SBA-15 results in enhancement of initial catalytic activity. It was observed that the 9 wt% Y–NiO/SBA-15 catalyst performs the best, exhibiting excellent catalytic activity, superior stability and low carbon deposition in a time on stream of 50 h.  相似文献   

7.
To increase the activity and stability of Ni/SiO2 catalysts, a series of Ni–Ca, Ni–K and Ni–Ce promoted catalysts were prepared by successive impregnations. The textural properties, reducibility and catalytic performance in the methane decomposition reaction were investigated. The catalyst containing 30 wt.% Ni and 30 wt.% cerium oxide greatly increased the conversion of methane (90% of equilibrium value) and improved the stability, whereas the Ni–K and Ni–Ca were less active and stable than the Ni/SiO2 catalyst. The results suggest that Ce addition prevents the sintering of nickel particles during reduction process maintaining a random distribution between the silica and cerium oxide improving the distribution and migration of deposited carbon.  相似文献   

8.
The effect of preparation method on MgO-promoted Ni–Ce0.8Zr0.2O2 catalysts was investigated in CO2 reforming of CH4. Co-precipitated Ni–MgO–Ce0.8Zr0.2O2 exhibited very high activity as well as stability (XCH4 > 95% at 800 °C for 200 h) due to high surface area, high dispersion of Ni, small Ni crystallite size, and easier reducibility. Four elements (Ni, Mg, Ce, and Zr) are located at the same position for the co-precipitated catalyst, resulting in easier reducibility.  相似文献   

9.
CO2 reforming of methane into synthesis gas over Ni/SiO2 catalysts promoted by La, Mg, Co and Zn was investigated. The catalysts were prepared by impregnation method and characterized by XRD, TPR, SEM and TG-DTA techniques. Ni-La/SiO2 catalyst was found to exhibit high activity and excellent stability with the addition of suitable amount of La promoter, which increased the dispersion of NiO and the interaction between NiO and SiO2. Two different types of carbon species, namely, easily oxidized carbonaceous species and inert carbon, were observed on the surface of the used catalysts. The inert carbon deposited on Ni-Mg/SiO2 catalyst may be the main reason for its deactivation, while the principal reason for the deactivation of Ni-Co/SiO2 catalyst might be the sintering of metallic Ni. The addition of La and Mg decreased the contribution of reverse water-gas shift reaction, leading to higher H2 yield.  相似文献   

10.
The objective of the study is to investigate the catalytic performance of Cr-promoted Ni/char in CO2 reforming of CH4 at 850 °C. The char obtained from the pyrolysis of a long-flame coal at 1000 °C was used as the support. The catalysts were prepared by incipient wetness impregnation methods with different metal precursor doping sequence. The characterization of the composite catalysts was evaluated by XRD, XPS, SEM-EDS, TEM, H2-TPR, CO2-TPD, CH4-TPSR, and CO2-TPO. The results indicate that the catalyst prepared by co-impregnation of Ni and Cr possess higher activity than those by sequential impregnation. The optimal loading of Cr on 5 wt% Ni/char is 7.8 wt‰. Moreover, the molar feed ratio of CH4/CO2 has a considerable effect on both the stability and the activity of Cr–Ni/char. The main effect of Cr is the great enhance of the adsorption to CO2. It is interesting that the conversions of CH4 and CO2 over Cr-promoted Ni/char and Ni/char decrease initially, following by a steady rise as the reaction proceeds with time-on-stream (TOS). In addition, cyclic tests were conducted and no distinct deterioration in the catalytic performance of the catalysts was observed. On the basis of the obtained results, nickel carbide was speculated to be the active species which was formed during the CO2 reforming of CH4 reaction.  相似文献   

11.
In this paper autothermal reforming of methane (ATR) was carried out over MgAl2O4 supported Ni catalysts with various Ni loadings. MgAl2O4 spinel with high specific surface area, as nanocrystalline carrier for nickel catalysts was synthesized by co-precipitation method with the addition of pluronic P123 triblock copolymer as surfactant. The prepared samples were characterized by XRD, BET, TEM, SEM, TPR and TPH techniques. The results demonstrated that methane conversion is significantly increased with increasing the Ni content and methane conversion of 15% Ni/MgAl2O4 was higher than that of other catalysts in all operation temperatures. Furthermore the influences of H2O/CH4, and O2/CH4 molar ratio in feed and GHSV on activity of 5% Ni/MgAl2O4 catalyst were investigated.  相似文献   

12.
The aim of this study is to investigate the promotional effect of Ce on Ni/ZSM-5 catalysts in the CO2 reforming of CH4 reaction. The evaluation of the catalytic performances of the composite catalysts was conducted in a fixed-bed reactor at atmospheric pressure. The influencing factors, including temperature, Ni and Ce loadings, molar feed ratio of CO2/CH4, and time-on-stream (TOS), were investigated. The characteristics of the catalysts were checked with Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The reduction and the basic properties of the composite catalysts were elucidated by temperature-programmed reduction by H2 (H2-TPR) and temperature-programmed desorption of CO2 (CO2-TPD), respectively. The reactivity of deposited carbon was studied by sequential temperature-programmed surface reaction of CH4 (CH4-TPSR) and temperature-programmed oxidation using CO2 and O2 (CO2-TPO and O2-TPO). Results indicate that higher CH4 conversion, H2 selectivity, and desired H2/CO ratio for 5 wt% Ni & 5 wt% Ce/ZSM-5 could be achieved with CO2/CH4 feed ratio close to unity over the temperature range of 500–900 °C. Moreover, the addition of Ce could not only promote CH4 decomposition for H2 production but also the gasification of deposited carbon with CO2. The dispersion of Ni particles could be improved with Ce presence as well. A partial reduction of CeO2 to CeAlO3 was observed from XPS spectra over 5 wt% Ni & 5 wt% Ce/ZSM-5 after H2 reduction and 24 h CO2–CH4 reforming reaction. Benefiting from the introduction of 5 wt% Ce, the calculated apparent activation energies of CH4 and CO2 over the temperature range of 700–900 °C could be reduced by 30% and 40%, respectively.  相似文献   

13.
Nickel on zirconium-modified silica was prepared and tested as a catalyst for reforming methane with CO2 and O2 in a fluidized-bed reactor. A conversion of CH4 near thermodynamic equilibrium and low H2/CO ratio (1<H2/CO<2) were obtained without catalyst deactivation during 10 h, in a most energy efficient and safe manner. A weight loading of 5 wt% zirconium was found to be the optimum. The catalysts were characterized using X-ray diffraction (XRD), H2-temperature reaction (H2-TPR), CO2-temperature desorption (CO2-TPD) and transmission election microscope (TEM) techniques. Ni sintering was a major reason for the deactivation of pure Ni/SiO2 catalysts, while Ni dispersed highly on a zirconium-promoted Ni/SiO2 catalyst. The different kinds of surface Ni species formed on ZrO2-promoted catalysts might be responsible for its high activity and good resistance to Ni sintering.  相似文献   

14.
Steam reforming of methanol was investigated over Cu–ZnO–ZrO2–Al2O3 catalysts at 473 and 573 K. The Cu:Zn:(Al + Zr) molar ratio was 3:3:4; however, the Zr:Al molar ratio was varied and the catalysts were pretreated at different calcination and reduction temperatures. The synthesized catalysts were characterized by N2 physisorption, temperature-programmed reduction with H2 (H2-TPR), X-ray diffraction, oxidized surface TPR, and infrared spectroscopy after carbon monoxide chemisorption. The crystalline size of Cu decreased on increasing the calcination temperatures from 573 to 623 K and increased on increasing the reduction temperatures from 523 to 573 K. Among the tested catalysts, the Cu–ZnO–ZrO2 catalyst exhibited the highest and lowest hydrogen-formation rates at 473 and 573 K, respectively. After the reaction at 573 K, all the tested catalysts exhibited an increase in the Cu crystalline size, causing the catalyst deactivation. Among the tested catalysts, the Cu–ZnO–ZrO2–Al2O3 catalyst, where the Cu:Zn:Al:Zr molar ratio was 3:3:2:2, showed the highest and most stable catalytic activity at 573 K. Cu dispersion and catalyst composition affected the catalytic performance for steam reforming of methanol.  相似文献   

15.
Perovskite-type oxide catalysts LaNiO3 and La1−xCexNiO3 (x ≤ 0.5) were prepared by the Pechini method and used as catalysts for carbon dioxide reforming of methane to form synthesis gas (H2 + CO). The gaseous reactants consisted of CO2 and CH4 in a molar ratio of 1:1. At a GHSV of 10,000 hr−1, CH4 conversion over LaNiO3 catalyst increased from 66% at 600 °C to 94% at 800 °C, while CO2 conversion increased from 51% to 92%. The achieved selectivities of CO and H2 were 33% and 57%, respectively, at 600 °C. To prevent the deposition of carbon and the sintering nickel species, some of the Ni in perovskite-type oxide catalyst was substituted by Ce. Ce provided lattice oxygen vacancies, which activated C–H bonds, and increased the selectivity of H2 to 61% at 600 °C. XRD analysis indicates that the catalyst exhibited a typical perovskite spinel structure and formed La2O2CO3 phases after CO2 reforming. The FE-SEM results reveal carbon whisker of the LaNiO3 catalyst and the BET analysis indicates that the specific surface area increases after the reforming reaction. The H2-TPR results confirm that Ce metals can store and provide oxygen.  相似文献   

16.
LaNiO3@SiO2 core–shell nano-particles were prepared by coating LaNiO3 nano-particles with SiO2 and then employed to catalyze the dry reforming of CH4 to produce syngas (CO + H2) in a coaxial dielectric barrier discharge (DBD) plasma reactor under ambient conditions. Compared to the traditional Ni-based catalysts (Ni/SiO2, LaNiO3/SiO2 and LaNiO3), LaNiO3@SiO2 exhibited better catalytic performance in the dry reforming of CH4 in DBD plasma reactor, such as higher reactant conversion and product selectivity, and excellent catalytic stability. The conversions of CH4 and CO2 reached 88.31% and 77.76%, and selectivities of CO and H2 were 92.43% and 83.65%, respectively. Results manifested the core–shell structure endowed LaNiO3@SiO2 with excellent catalytic performance because the SiO2 shell was capable of preventing Ni from sintering and mitigating carbon deposition during the reaction.  相似文献   

17.
SiO2-ZrO2 supports with various zirconium contents are prepared by grafting a zirconium precursor onto the surface of commercial Carbosil silica. Ni(20 wt.%)/SiO2-ZrO2 catalysts are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of SiO2-ZrO2 supports on the performance of the Ni(20 wt.%)/SiO2-ZrO2 catalysts is investigated. SiO2-ZrO2 prepared by a grafting method serves as an efficient support for the nickel catalyst in the steam reforming of LNG. Zirconia enhances the resistance of silica to steam significantly and increases the interaction between nickel and the support, and furthermore, prevents the growth of nickel oxide species during the calcination process through the formation of a ZrO2-SiO2 composite structure. The crystalline structures and catalytic activities of the Ni(20 wt.%)/SiO2-ZrO2 catalysts are strongly influenced by the amount of zirconium grafted. The conversion of LNG and the yield of hydrogen show volcano-shaped curves with respect to zirconium content. Among the catalysts tested, the Ni(20 wt.%)/SiO2-ZrO2 (Zr/Si = 0.54) sample shows the best catalytic performance in terms of both LNG conversion and hydrogen yield. The well-developed and pure tetragonal phase of ZrO2-SiO2 (Zr/Si = 0.54) appears to play an important role in the adsorption of steam and subsequent spillover of steam from the support to the active nickel. The small particle size of the metallic nickel in the Ni(20 wt.%)/SiO2-ZrO2 (Zr/Si = 0.54) catalyst is also responsible for its high performance.  相似文献   

18.
Ni-based catalysts have been widely studied in reforming methane with carbon dioxide. However, Ni-based catalysts tends to form carbon deposition at low temperatures (≤600 °C), compared with high temperatures. In this paper, a series of Ni/SiO2-XG catalysts were prepared by the glycine-assisted incipient wetness impregnation method, in which X means the molar ratio of glycine to nitrate. XRD, H2-TPR, TEM and XPS results confirmed that the addition of glycine can increase Ni dispersion and enhance the metal-support interaction. When X ≥ 0.3, these catalysts have strong metal-support interaction and small Ni particle size. The Ni/SiO2-0.7G catalyst has the best catalytic performance in dry reforming of methane (DRM) test at 600 °C, and its CH4 conversion is 3.7 times that of Ni/SiO2-0G catalyst. After 20 h reaction under high GHSV (6 × 105 ml/gcat/h), the carbon deposition of Ni/SiO2-0.7G catalyst is obviously lower than that of Ni/SiO2-0G catalyst. Glycine-assisted impregnation method can enhance the metal-support interaction and decrease the metal particle size,which is a method to prepare highly dispersed and stable Ni-based catalyst.  相似文献   

19.
Silica supported Ni catalyst is highly active for the CO2 reforming of methane but it has poor stability due to coke formation. In this work, a glow discharge plasma was applied for the decomposition of nickel nitrate on the SiO2 support, followed by thermal calcination in air. The plasma treatment enhances the interactions between the Ni particles and the silica and significantly improves the Ni dispersion. The plasma-treated Ni/SiO2 catalyst exhibits comparable activity to the Ni/SiO2 catalyst prepared by the thermal method without plasma treatment. The coke resistance of the Ni/SiO2 catalyst is significantly enhanced by the plasma treatment.  相似文献   

20.
A series of nanocrystalline mesoporous Ni/Al2O3SiO2 catalysts with various SiO2/Al2O3 molar ratios were prepared by the sol-gel method for the carbon dioxide methanation reaction. The synthesized catalysts were evaluated in terms of catalytic performance and stability. The catalysts were studied using XRD, BET, TPR and SEM. The BET results indicated that the specific surface area of the samples with composite oxide support changed from 254 to 163.3 m2/g, and an increase in the nickel crystallite size from 3.53 to 5.14 nm with an increment of Si/Al molar ratio was visible. The TPR results showed a shift towards lower temperatures, indicating a better reducibility and easier reduction of the nickel oxide phase into the nickel metallic phase. Furthermore, the catalyst with SiO2/Al2O3 molar ratio of 0.5 was selected as the optimal catalyst, which showed 82.38% CO2 conversion and 98.19% CH4 selectivity at 350 °C, high stability, and resistivity toward sintering. Eventually, the optimal operation conditions were specified by investigating the effect of H2/CO2 molar ratio and gas hourly space velocity (GHSV) on the catalytic behavior of the denoted catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号