首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MgH2, rather than Mg, was used as a starting material in this work. A sample with a composition of MgH2–10Ni–4Ti was prepared by reactive mechanical grinding. Activation of the sample was completed after the first hydriding cycle. At n = 1, the sample desorbed 2.53 wt% H for 10 min, 3.99 wt% H for 20 min, 4.58 wt% H for 30 min, and 4.68 wt% H for 60 min at 593 K under 1.0 bar H2. At n = 2, the sample absorbed 3.59 wt% H for 5 min, 4.55 wt% H for 25 min, and 4.60 wt% H for 45 min at 593 K under 12 bar H2. The inverse dependence of the hydriding rate on the temperature in the initial stage and the normal dependence of the hydriding rate on the temperature in the later stage were discussed. The rate-controlling step for the dehydriding reaction of activated MgH2–10Ni–4Ti was analyzed as the chemical reaction at the hydride/α-solid solution interface.  相似文献   

2.
In order to increase the hydrogen storage capacity of Mg-based materials, a mixture with a composition of 2LiBH4 + MgF2 and LiBH4, which has a hydrogen storage capacity of 18.4 wt%, were added to MgH2. Ti isopropoxide was also added to MgH2 as a catalyst. A MgH2 composite with a composition of 40 wt%MgH2 + 25 wt%LiBH4 + 30 wt% (2LiBH4 + MgF2) + 5 wt%Ti isopropoxide (corresponding to 40 wt%MgH2 + 37 wt%LiBH4 + 18 wt%MgF2 + 5 wt%Ti isopropoxide) was prepared by reactive mechanical grinding. The hydrogen storage properties of the sample were then examined. Hydrogen content vs. desorption time curves for consecutive 1st desorptions of 40 wt%MgH2 + 37 wt%LiBH4 + 18 wt%MgF2 + 5 wt%Ti isopropoxide from room temperature to 823 K showed that the total desorbed hydrogen quantity for consecutive 1st desorptions was 8.30 wt%.  相似文献   

3.
In this study, various nanoscale metal oxide catalysts, such as CeO2, TiO2, Fe2O3, Co3O4, and SiO2, were added to the LiBH4/2LiNH2/MgH2 system by using high-energy ball milling. Temperature programmed desorption and MS results showed that the Li–Mg–B–N–H/oxide mixtures were able to dehydrogenate at much lower temperatures. The order of the catalytic effect of the studied oxides was Fe2O3 > Co3O4 > CeO2 > TiO2 > SiO2. The onset dehydrogenation temperature was below 70 °C for the samples doped with Fe2O3 and Co3O4 with 10 wt.%. More than 5.4 wt.% hydrogen was released at 140 °C. X-ray diffraction indicated that the addition of metal oxides inhibited the formation of Mg(NH2)2 during ball milling processes. It is thought that the changing of the ball milling products results from the interaction of oxide ions in metal oxide catalysts with hydrogen atoms in MgH2. The catalytic effect depends on the activation capability of oxygen species in metal oxides on hydrogen atoms in hydrides.  相似文献   

4.
The effect of lithium borohydride (LiBH4) on the hydriding/dehydriding kinetics and thermodynamics of magnesium hydride (MgH2) was investigated. It was found that LiBH4 played both positive and negative effects on the hydrogen sorption of MgH2. With 10 mol.% LiBH4 content, MgH2–10 mol.% LiBH4 had superior hydrogen absorption/desorption properties, which could absorb 6.8 wt.% H within 1300 s at 200 °C under 3 MPa H2 and completed desorption within 740 s at 350 °C. However, with the increasing amount of LiBH4, the hydrogenation/dehydrogenation kinetics deteriorated, and the starting desorption temperature increased and the hysteresis of the pressure-composition isotherm (PCI) became larger. Our results showed that the positive effect of LiBH4 was mainly attributed to the more uniform powder mixture with smaller particle size, while the negative effect of LiBH4 might be caused by the H–H exchange between LiBH4 and MgH2.  相似文献   

5.
LiBH4+1/2MgH2 is a promising reactive hydride composite for hydrogen storage. In the present study, three Ce-based additives were used as catalysts to enhance the hydrogen storage performance of LiBH4+1/2MgH2 composites. The composites with Ce additives demonstrated significantly improved dehydrogenation kinetics and cyclic stability compared with the pure composite. X-ray diffraction and scanning electron microscopy analyses clearly revealed the phase transitions and morphological evolution during the hydriding-dehydriding cycling. The composites with Ce-based additives displayed stable nanostructures, in contrast to the rapid microstructural deterioration in the uncatalyzed composite. The CeB6 formed in the composites had a particle size of 10 nm after five cycles. It may act as the nucleus for MgB2 formation during dehydrogenation and thus account for the structural and performance stability of the composites upon cycling.  相似文献   

6.
LiBH4 is regarded as a promising hydrogen storage material due to its high hydrogen density. In this study, the dehydrogenation properties of LiBH4 were remarkably enhanced by doping hydrogenated Mg3RE compounds (RE denotes La, Ce, Nd rare earth metals), which are composed of nanostructured MgH2 and REH2+x (denoted as H − Mg3RE). For the LiBH4 + H − Mg3La mixture, the component LiBH4 desorbed 6 wt.% hydrogen even at a relatively low temperature of 340 °C, far lower than the desorption temperature of pure LiBH4 or the 2LiBH4 + MgH2 system. This kinetic improvement is attributed to the hydrogen exchange mechanism between the H − Mg3La and LiBH4, in the sense that the decomposition of MgH2 and LaH2+x catalyzed the dehydrogenation of LiBH4 through hydrogen exchange effect rather than mutual chemical reaction requiring higher temperature and hydrogen pressure. However, prior to fast hydrogen release, the hydrogen exchange effect suppressed the dehydriding of MgH2 and elevated its desorption temperature. It is expected to strengthen the hydrogen exchange effect by compositing the LiBH4 with other nanosized metal hydrides and to obtain better dehydrogenation properties.  相似文献   

7.
LiBH4 nano-particles are incorporated into mesoporous TiO2 scaffolds via a chemical impregnation method. And the enhanced desorption properties of the composite have been investigated. The LiBH4/TiO2 sample starts to release hydrogen at 220 °C and the maximal desorption peak occurs at about 330 °C, much lower compared to the bulk LiBH4. Furthermore, the composite exhibits excellent dehydrogenation kinetics, with 11 wt% of hydrogen liberated from LiBH4 at 300 °C within 3 h. X-ray diffraction and Fourier transform infrared spectroscopy are used to confirm the nanostructure of LiBH4 in the TiO2 scaffold. This work demonstrates that confinement within active porous scaffold host is a promising approach for enhancing hydrogen decomposition properties of light-metal complex hydrides.  相似文献   

8.
2LiBH4/MgH2 system is a representative and promising reactive hydride composite for hydrogen storage. However, the high desorption temperature and sluggish desorption kinetics hamper its practical application. In our present report, we successfully introduce CoNiB nanoparticles as catalysts to improve the dehydrogenation performances of the 2LiBH4/MgH2 composite. The sample with CoNiB additives shows a significant desorption property. Temperature programmed desorption (TPD) measurement demonstrates that the peak decomposition temperatures of MgH2 and LiBH4 are lowered to be 315 °C and 417 °C for the CoNiB-doped 2LiBH4/MgH2. Isothermal dehydrogenation analysis demonstrates that approximately 10.2 wt% hydrogen can be released within 360 min at 400 °C. In addition, this study gives a preliminary evidence for understanding the CoNiB catalytic mechanism of 2LiBH4/MgH2  相似文献   

9.
The hydrogen storage properties of 5LiBH4 + Mg2FeH6 reactive hydride composites for reversible hydrogen storage were investigated by comparing with the 2LiBH4 + MgH2 composite in the present work. The dehydrogenation pathway and reaction mechanism of 5LiBH4 + Mg2FeH6 composite were also investigated and elucidated. The self-decomposition of Mg2FeH6 leads to the in situ formation of Mg and Fe particles on the surface of LiBH4, resulting in a well dispersion between different reacting phases. The formation of FeB is observed during the dehydrogenation of 5LiBH4 + Mg2FeH6 composite, which might supplies nucleation sites of MgB2 during the dehydrogenation process, but is not an ascendant catalyst for the self-decomposition of LiBH4. And FeB can also transform to the LiBH4 and Fe by reacting with LiH and H2 during the rehydrogenation process. The dehydrogenation capacity for 5LiBH4 + Mg2FeH6 composite still gets to 6.5 wt% even after four cycles. The X-ray diffraction analyses reveal the phase transitions during the hydriding and dehydriding cycle. The formed FeB in the composite maintains a nanostructure after four hydriding-dehydriding cycles. The loss of hydrogen storage capacity and de-/rehydrogenation kinetics can be attributed to the incomplete generation of Mg2FeH6 during the rehydrogenation process.  相似文献   

10.
MgH2 is one of the most promising hydrogen storage materials due to its high capacity and low cost. In an effort to develop MgH2 with a low dehydriding temperature and fast sorption kinetics, doping MgH2 with NiCl2 and CoCl2 has been investigated in this paper. Both the dehydrogenation temperature and the absorption/desorption kinetics have been improved by adding either NiCl2 or CoCl2, and a significant enhancement was obtained in the case of the NiCl2 doped sample. For example, a hydrogen absorption capacity of 5.17 wt% was reached at 300 °C in 60 s for the MgH2/NiCl2 sample. In contrast, the ball-milled MgH2 just absorbed 3.51 wt% hydrogen at 300 °C in 400 s. An activation energy of 102.6 kJ/mol for the MgH2/NiCl2 sample has been obtained from the desorption data, 18.7 kJ/mol and 55.9 kJ/mol smaller than those of the MgH2/CoCl2, which also exhibits an enhanced kinetics, and of the pure MgH2 sample, respectively. In addition, the enhanced kinetics was observed to persist even after 9 cycles in the case of the NiCl2 doped MgH2 sample. Further kinetic investigation indicated that the hydrogen desorption from the milled MgH2 is controlled by a slow, random nucleation and growth process, which is transformed into two-dimensional growth after NiCl2 or CoCl2 doping, suggesting that the additives reduced the barrier and lowered the driving forces for nucleation.  相似文献   

11.
Ni, Fe2O3, and CNT were added to Mg. The content of the additives was about 20 wt % with that of Fe2O3 6 wt%. The contents of about 20 wt % additives and 6 wt% Fe2O3 are known optimum ones to improve the reaction rates of Mg with H2. Samples with compositions of 80 wt% Mg–14 wt% Ni–6 wt% Fe2O3 (named as Mg–14Ni–6Fe2O3), and 78 wt% Mg–14 wt% Ni–6 wt% Fe2O3–2 wt% CNT (named as Mg–14Ni–6Fe2O3–2CNT) were prepared by reactive mechanical grinding. The hydriding and dehydriding properties of these samples were then measured, and the effects of Ni, Fe2O3, and CNT addition on the hydriding and dehydriding rates of Mg-based alloys were investigated by comparing their hydrogen-storage properties with those of pure Mg and Mg–10 wt% Fe2O3.  相似文献   

12.
The understanding of hydrogen bonding in magnesium and magnesium based alloys is an important step toward its prospective use. In the present study, a density functional theory (DFT) based, full-potential augmented plane waves method of calculation, extended with local orbitals (FP-APW+lo), was used to investigate the stability of MgH2 and MgH2:TM (TM = Ti and Co) 10 wt % alloys and the influence of this alloying on hydrogen storage properties of MgH2 compound. Effects of a possible spin polarisation induced in the system by transition metal (TM) ions were considered too. It has been found that TM-H bonding is stronger than the Mg–H bond, but at the same time it weakens other bonds in the second and third coordination around a TM atom, which leads to overall destabilization of the MgH2 compound. Due to a higher number of d-electrons, this effect is more pronounced for Co alloying, where in addition, the spin polarisation has a noticeable and stabilising influence on the compound structure.  相似文献   

13.
In this work, the hydriding–dehydriding properties of the LiBH4–NbF5 mixtures were investigated. It was found that the dehydrogenation and reversibility properties of LiBH4 were significantly improved by NbF5. Temperature-programed dehydrogenation (TPD) showed that 5LiBH4–NbF5 sample started releasing hydrogen from as low as 60 °C, and 4 wt.% hydrogen could be obtained below 255 °C. Meanwhile, ∼7 wt.% H2 could be reached at 400 °C in 20LiBH4–NbF5 sample, whereas pristine LiBH4 only released ∼0.7 wt.% H2. In addition, reversibility measurement demonstrated that over 4.4 wt.% H2 could still be released even during the fifth dehydrogenation in 20LiBH4–NbF5 sample. The experimental results suggested that a new borohydride possibly formed during ball milling the LiBH4–NbF5 mixtures might be the source of the active effect of NbF5 on LiBH4.  相似文献   

14.
The hydrogen sorption properties of magnesium hydride–sodium borohydride composites prepared by means of high-energy ball milling under Ar atmosphere were investigated. Mutual influence of milling time and the content of NaBH4 were studied. Microstructural and morphological analyses were carried out using X-ray Diffraction (XRD), laser scattering measurements and Scanning Electron Microscopy (SEM), while kinetic analysis and cycling were performed in a Sievert's volumetric apparatus. It has been shown that low content of NaBH4 and short milling time are beneficial for hydrogen sorption kinetics.  相似文献   

15.
MgH2 is a perspective hydrogen storage material whose main advantage is a relatively high hydrogen storage capacity (theoretically, 7.6 wt.% H2). This compound, however, shows poor hydrogen desorption kinetics. Much effort was devoted in the past to finding possible ways of enhancing hydrogen desorption rate from MgH2, which would bring this material closer to technical applications. One possible way is catalysis of hydrogen desorption. This paper investigates separate catalytic effects of Ni, Mg2Ni and Mg2NiH4 on the hydrogen desorption characteristics of MgH2. It was observed that the catalytic efficiency of Mg2NiH4 was considerably higher than that of pure Ni and non-hydrated intermetallic Mg2Ni. The Mg2NiH4 phase has two low-temperature modifications below 508 K: un-twinned phase LT1 and micro-twinned phase LT2. LT1 was observed to have significantly higher catalytic efficiency than LT2.  相似文献   

16.
In this study, we report the hydrogen absorption/desorption properties and reaction mechanism of the MgH2-NaAlH4 (4:1) composite system. This composite system showed improved dehydrogenation performance compared with that of as-milled NaAlH4 and MgH2 alone. The dehydrogenation process in the MgH2-NaAlH4 composite can be divided into four stages: NaAlH4 is first reacted with MgH2 to form a perovskite-type hydride, NaMgH3 and Al. In the second dehydrogenation stage, the Al phase reacts with MgH2 to form Mg17Al12 phase accompanied with the self-decomposition of the excessive MgH2. NaMgH3 goes on to decompose to NaH during the third dehydrogenation stage, and the last stage is the decomposition of NaH. Kissinger analysis indicated that the apparent activation energy, EA, for the MgH2-relevent decomposition in MgH2-NaAlH4 composite was 148 kJ/mol, which is 20 kJ/mol less than for as-milled MgH2 (168 kJ/mol). X-ray diffraction patterns indicate that the second, third, and fourth stages are fully reversible. It is believed that the formation of Al12Mg17 phase during the dehydrogenation process alters the reaction pathway of the MgH2-NaAlH4 (4:1) composite system and improves its thermodynamic properties.  相似文献   

17.
In this study, alkali hydroxides (NaOH, LiOH, KOH) were attempted as new-type catalytic additives to improve the hydrogen storage properties of MgH2 by ball milling. It is shown that the additives readily react with the MgH2 to form perovskite-structured NaMgH3 and KMgH3, but not the LiMgH3. Although the in-situ formed perovskite hydrides remain stable during hydriding/dehydriding cycles, both NaMgH3 and KMgH3 show predominant catalytic role on the hydriding and dehydriding of MgH2. In contrast, the LiOH modified MgH2 presents much inferior sorption kinetics because of the absence of LiMgH3. The catalytic mechanism of perovskite hydrides can be explained by the high hydrogen mobility in the perovskite structure. This study shows that such cheap hydroxides could be used as efficient catalysts to improve the hydrogen storage properties of high-capacity metal hydrides and complex hydrides.  相似文献   

18.
Fine Ni particles are effective in catalyzing hydrogen sorption of MgH2, but there is confusion about the extent of this effect in relation to Ni particle size and content. Here, effects of Ni particles of different sizes on hydrogen desorption of MgH2 were comparatively investigated. MgH2 mixed with only 2 at% of fine Ni particles rapidly desorbs hydrogen up to 6.5 wt% around 200–340 °C, but there is no significant difference in the desorption temperature of the mixture when Ni particles vary from 90 to 200 nm. Increasing the content of Ni to 4 at%, or a combined (2 at% Ni + 2 at% Fe), leads to hydrogen desorption starting from 160 °C. Further analyses of the literature suggest that the effectiveness of Ni catalysis largely depends on its site density over MgH2 surface, i.e., an optimal site density of catalytic particles is important in balancing the sorption properties of MgH2. The projected trend suggests that MgH2 can desorb hydrogen from 100 °C, the targeted temperature for fuel cells, if the number of catalyst sites is around 4 × 1014 per m2 of MgH2, or the number ratio of Ni to MgH2 particles is about a million to one.  相似文献   

19.
The hydrogen desorption properties of MgH2–LiAlH4 composites obtained by mechanical milling for different milling times have been investigated by Thermal Desorption Spectroscopy (TDS) and correlated to the sample microstructure and morphology analysed by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The MgH2–LiAlH4 composites show improved hydrogen desorption properties in comparison with both as-received and ball-milled MgH2. Mixing of MgH2 with small amount of LiAlH4 (5 wt.%) using short mechanical milling (15 min) shifts, in fact, the hydrogen desorption peak to lower temperature than those observed with both as-received and milled MgH2 samples. Longer mixing times of the MgH2–LiAlH4 composites (30 and 60 min) reduce the catalytic activity of the LiAlH4 additive as revealed by the shift of the hydrogen desorption peak to higher temperatures.  相似文献   

20.
To improve hydrogen desorption properties of MgH2, mechanical milling of MgH2 with low concentration (2 and 5%) of NaNH2 has been performed. Pre-milling of MgH2 for 10 h has been done and then six samples have been synthesised with different milling times from 15 to 60 min. Microstructural characterisation has been performed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and laser scattering measurements (PSD), and correlated to desorption properties examined using Differential Scanning Calorimetry (DSC) and Hydrogen Sorption Analyser (HSA). Thermal analysis shows that desorption temperatures are shifted towards lower values. It also highlights the significance of milling time and additive concentration on desorption behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号