首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A significant decrease in the dehydrogenation temperature of Mg(AlH4)2 was achieved by low-energy ball milling with TiF4. Approximately 8.0 wt% of hydrogen was released from the Mg(AlH4)2-0.025TiF4 sample with an on-set temperature of 40 °C, which represents a decrease of 75 °C relative to pristine Mg(AlH4)2. In contrast to the three-step reaction for pristine Mg(AlH4)2, hydrogen desorption from the TiF4-doped sample involves a two-step process because the Ti-based species participates in the dehydrogenation reaction. The presence of TiF4 alters the nucleation and growth of the dehydrogenation product, significantly decreasing the activation energy barrier of the first step in the dehydrogenation of Mg(AlH4)2. Further hydrogenation measurements revealed that the presence of the Ti-based species was also advantageous for hydrogen uptake, as the on-set hydrogenation temperature was only 100 °C for the dehydrogenated TiF4-doped sample, compared with 130 °C for the additive-free sample.  相似文献   

2.
MgH2-Li3AlH6 mixture shows a mutual activation effect between the components. But the dehydrogenation kinetics is still slow, especially at temperature as low as 250 °C. Hereby, an additive (TiF3) was introduced into the mixture in the present study. The reaction mechanisms were studied by the combined analyses of X-ray diffraction (XRD), thermogravimetric analysis (TGA), as well as thermodynamic calculations. A two-step ball milling method could reduce the mechanical decomposition of Li3AlH6 effectively and was adopted. During milling, Li3AlH6 reacts with TiF3 and produces Al3Ti while MgH2 remains stable. All the species are well mixed after milling and the grain size is as small as 100 nm. During TGA test, all the reactions occur at lower temperatures compared with undoped mixture, especially the dehydrogenation of MgH2, which shows a decrease of 60 °C. Its activation energy is reduced by 32.0 kJ mol−1. The first three isothermal (250 °C) cycles indicate that the kinetics of dehydrogenation has been greatly enhanced, showing a reversible capacity of 4.5 wt.% H2. The time needed for the 1st dehydrogenation has been shortened to 3600 s from 8000 s for the undoped mixture. These improvements are mainly attributed to the catalytic effect of the in-situ formed Al3Ti. But there is no influence on the rehydrogenation kinetics and the enthalpy of the dehydrogenation of MgH2 is unchanged.  相似文献   

3.
Mg(AlH4)2 and CaAlH5 were synthesized by direct ball milling of AlH3 and MgH2 or AlH3 and CaH2 hydrides. The XRD profiles indicated crystalline compounds. Several ball-milling conditions were studied and the optimum parameters were found. Among these, the key parameter is the pause used to cool down the milling device, which allows reducing the temperature rise during milling. Thus, the maximum yield of complex hydrides was obtained by minimizing the desorbed alane amount. The decomposition properties were studied and were in agreement with those reported for different synthesis methods. Mg(AlH4)2 with a good hydrogen capacity and a decomposition reaction enthalpy close to 0 kJ/mol H2 can be a candidate for one-way storage systems. As for CaAlH5, it might be suitable for reversible hydrogen storage thanks to its dehydrogenation reaction enthalpy (26 kJ/mol H2). However, rather high activation energy values were evaluated for both compounds (119 and 161 kJ/mol, respectively).  相似文献   

4.
The effects of NaOH addition on hydrogen absorption/desorption properties of the Mg(NH2)2-2LiH system were investigated systematically by means of dehydrogenation/hydrogenation measurements and structural analyses. It is found that the NaOH-added Mg(NH2)2-2LiH samples exhibit an enhanced dehydrogenation/hydrogenation kinetics. In particular, a ∼36 °C reduction in the peak temperature for dehydrogenation is achieved for the Mg(NH2)2-2LiH-0.5NaOH sample with respect to the pristine sample. Structural examinations reveal that NaOH reacts with Mg(NH2)2 and LiH to convert to NaH, LiNH2 and MgO during ball milling. Then, their co-catalytic effects result in a significant improvement in the dehydrogenation/hydrogenation kinetics of the Mg(NH2)2-2LiH system. This finding will help in designing and optimizing the novel high-performance catalysts to further improve hydrogen storage in the amide-hydride combined systems.  相似文献   

5.
Based on the positive influence of carbon materials and transition metals, a new type of Mg-based composites with particle size of ~800 nm has been designed by doping hydrogenated Mg–Ni–La alloy with multi-walled carbon nanotubes (MWCNTs) and/or Co nanoparticles. The microstructures, temperature related hydrogen absorption/desorption kinetics and dehydrogenation mechanisms are investigated in detail. The results demonstrate that MWCNTs and Co dispersedly distribute on the surface of Mg–Ni–La particles after high-energy ball milling due to powders’ repeated cold welding and tearing. The experimental samples exhibit improved hydrogen storage behaviors and the addition of MWCNTs and Co can further accelerate the de-/hydriding kinetics. For instance, the Mg–Ni–La–Co sample can absorb 3.63 wt% H2 within 40 min at 343 K. Dehydrogenation analyses demonstrate that the positive effect of MWCNTs is more obvious than that of Co nanoparticles for the experimental samples. The addition of MWCNTs and Co leads to the average dehydrogenation activation energy of experimental samples decreasing to 82.1 and 84.5 kJ mol?1, respectively, indicating a significant decrease of dehydrogenation energy barriers. In addition, analyses of dehydrogenation mechanisms indicate that the rate-limiting steps vary with the addition of MWCTNs and Co nanoparticles.  相似文献   

6.
Mg(AlH4)2 submicron rods with 96.1% purity have been successfully synthesized in a modified mechanochemical reaction process followed by Soxhlet extraction. ∼9.0 wt% of hydrogen is released from the as-prepared Mg(AlH4)2 at 125–440 °C through a stepwise reaction. Upon dehydriding, Mg(AlH4)2 decomposes first to generate MgH2 and Al. Subsequently, the newly produced MgH2 reacts with Al to form a Al0.9Mg0.1 solid solution. Finally, further reaction between the Al0.9Mg0.1 solid solution and the remaining MgH2 gives rise to the formation of Al3Mg2. The first step dehydrogenation is a diffusion-controlled reaction with an apparent activation energy of ∼123.0 kJ/mol. Therefore, increasing the mobility of the species involved in Mg(AlH4)2 will be very helpful for improving its dehydrogenation kinetics.  相似文献   

7.
The structures and dehydrogenation properties of pure and Ti/Ni-doped Mg(AlH4)2 were investigated using the first-principles calculations. The dopants mainly affect the geometric and electronic structures of their vicinal AlH4 units. Ti and Ni dopants improve the dehydrogenation of Mg(AlH4)2 in different mechanisms. In the Ti-doped case, Ti prefers to occupy the 13-hedral interstice (TiiA) and substitute for the Al atom (TiAl), to form a high-coordination structure TiHn (n = 6, 7). The Ti 3d electrons hybridize markedly with the H 1s electrons in TiAl and with the Al 3p electrons in TiiA, which weakens the Al–H bond of adjacent AlH4 units and facilitates the hydrogen dissociation. A TiAl3H13 intermediate in TiiA is inferred as the precursor of Mg(AlH4)2 dehydrogenation. In contrast, Ni tends to occupy the octahedral interstice to form the NiH4 tetrahedron. The tight bind of the Ni with its surrounding H atoms inhibits their dissociation though the nearby Al–H bond also becomes weak. Therefore, Ti is the better dopant candidate than Ni for improving the dehydrogenation properties of Mg(AlH4)2 because of its abundant activated hydrogen atoms and low hydrogen removal energy.  相似文献   

8.
The hydrogen sorption properties of magnesium hydride–sodium borohydride composites prepared by means of high-energy ball milling under Ar atmosphere were investigated. Mutual influence of milling time and the content of NaBH4 were studied. Microstructural and morphological analyses were carried out using X-ray Diffraction (XRD), laser scattering measurements and Scanning Electron Microscopy (SEM), while kinetic analysis and cycling were performed in a Sievert's volumetric apparatus. It has been shown that low content of NaBH4 and short milling time are beneficial for hydrogen sorption kinetics.  相似文献   

9.
LiAlH4 containing 5 wt.% of nanometric Fe (n-Fe) shows a profound mechanical dehydrogenation by continuously desorbing hydrogen (H2) during high energy ball milling reaching ∼3.5 wt.% H2 after 5 h of milling. In contrast, no H2 desorption is observed during low energy milling of LiAlH4 containing n-Fe. Similarly, no H2 desorption occurs during high energy ball milling for LiAlH4 containing micrometric Fe (μ-Fe) and, for comparison, both the micrometric and nanometric Ni (μ-Ni and n-Ni) additive. X-ray diffraction studies show that ball milling results in a varying degree of the lattice expansion of LiAlH4 for both the Fe and Ni additives. A volumetric lattice expansion larger than 1% results in the profound destabilization of LiAlH4 accompanied by continuous H2 desorption during milling according to reaction: LiAlH4 (solid) → 1/3Li3AlH6 + 2/3Al + H2. It is hypothesized that the Fe ions are able to dissolve in the lattice of LiAlH4 by the action of mechanical energy, replacing the Al ions and forming a substitutional solid solution. The quantity of dissolved metal ions depends primarily on the total energy of milling per unit mass of powder generated within a prescribed milling time, the type of additive ion e.g. Fe vs. Ni and on the particle size (micrometric vs. nanometric) of metal additive. For thermal dehydrogenation the average apparent activation energy of Stage I (LiAlH4 (solid) → 1/3Li3AlH6 + 2/3Al + H2) is reduced from the range 76 to 96 kJ/mol for the μ-Fe additive to about 60 kJ/mol for the n-Fe additive. For Stage II dehydrogenation (1/3Li3AlH6 → LiH+1/3Al + 0.5H2) the average apparent activation energy is within the range 77–93 kJ/mol, regardless of the particle size of the Fe additive (μ-Fe vs. n-Fe). The n-Fe and n-Ni additives, the latter used for comparison, provide nearly identical enhancement of dehydrogenation rate during isothermal dehydrogenation at 100 °C. Ball milled (LiAlH4 + 5 wt.% n-Fe) slowly self-discharges up to ∼5 wt.% H2 during storage at room temperature (RT), 40 and 80 °C. Fully dehydrogenated (LiAlH4 + 5 wt.% n-Fe) has been partially rehydrogenated up to 0.5 wt.% H2 under 100 bar/160°C/24 h. However, the rehydrogenation parameters are not optimized yet.  相似文献   

10.
Metal-N-H systems have recently attracted considerable attention as alternative hydrogen storage materials to traditional metal hydrides. In this work, the reactions of the mixture LiNH2-MgH2 (1:1) during different mechanical milling processes and the subsequent dehydrogenation reaction were investigated by using TGA, XRD and FT-IR in order to determine an optimal condition for the formation of pure LiMgN. High-energy milling (SPEX mill) and low-energy milling (rolling jar) techniques were used in this work. The results demonstrated that monolithic LiMgN can be produced using the low-energy ball milling technique. The hydrogenation properties of the as-prepared LiMgN were investigated by a Sieverts’ type instrument. In contrast, multiple reactions including the metathesis reaction between LiNH2 and MgH2 and release of H2 and/or NH3 took place during high-energy milling using the SPEX mill, which resulted in complicated and unexpected reactions during the subsequent dehydrogenation experiments. Consequently, the dehydrogenated products from the high-energy milled samples consisted of multi-phase mixtures.  相似文献   

11.
Aiming to gain insight on the hydrogen storage properties of Mg-based alloys, partial hydrogenation and hydrogen pressure related de-/hydrogenation kinetics of Mg–Ni–La alloys have been investigated. The results indicate that the phase boundaries, such as Mg/Mg2Ni and Mg/Mg17La2, distributed within the eutectics can act as preferential nucleation sites for β-MgH2 and apparently promote the hydrogenation process. For bulk alloy, it is observed that the hydrogenation region gradually grows from the fine Mg–Ni–La eutectic to primary Mg region with the extension of reaction time. After high-energy ball milling, the nanocrystalline powders with crystallite size of 12~20 nm exhibit ameliorated hydrogen absorption/desorption performance, which can absorb 2.58 wt% H2 at 368 K within 50 min and begin to desorb hydrogen from ~508 K. On the other side, variation of hydrogen pressure induced driving force significantly affects the reaction kinetics. As the hydrogenation/dehydrogenation driving forces increase, the hydrogen absorption/desorption kinetics is markedly accelerated. The dehydrogenation mechanisms have also been revealed by fitting different theoretical kinetics models, which demonstrate that the rate-limiting steps change obviously with the variation of driving forces.  相似文献   

12.
MgH2 is one of the most attractive candidates for on-board H2 storage. However, the practical application of MgH2 has not been achieved due to its slow hydrogenation/dehydrogenation kinetics and high thermodynamic stability. Many strategies have been adopted to improve the hydrogen storage properties of Mg-based materials, including modifying microstructure by ball milling, alloying with other elements, doping with catalysts, and nanosizing. To further improve the hydrogen storage properties, the nanostructured Mg is combined with other materials to form nanocomposite. Herein, we review the recent development of the Mg-based nanocomposites produced by hydrogen plasma-metal reaction (HPMR), rapid solidification (RS) technique, and other approaches. These nanocomposites effectively enhance the sorption kinetics of Mg by facilitating hydrogen dissociation and diffusion, and prevent particle sintering and grain growth of Mg during hydrogenation/dehydrogenation process.  相似文献   

13.
AlH3 is a metastable hydride with a high hydrogen density of 10.1 wt% and it can release hydrogen at a low temperature of 150–200 °C. Many additives (e.g., NbF5, TiF3, etc.) introduced by ball milling can significantly reduce the decomposition temperature of AlH3, but often simultaneously decrease the available hydrogen capacity. In this work, TiB2 was introduced by ball milling to improve the decomposition performance of AlH3. AlH3 + x wt% TiB2 (x = 2.5, 5, 7.5, 10) composites were prepared by ball milling, and the milling conditions were optimized. It was shown that the decomposition performance of the AlH3 + 2.5 wt% TiB2 ball milled at 225 rpm for 108 min is the best. The onset decomposition temperature is 78 °C, which is 60 °C lower than that of pure AlH3. The decomposition is terminated at 130 °C with 8.5 wt% of hydrogen is obtained. In addition, 5.3 wt% of hydrogen can be released within 200 min at constantly 80 °C. Under the same conditions, ball-milled AlH3 can hardly release any hydrogen. The activation energy calculated by the Kissinger's method is 86 kJ mol?1, which was 28 kJ mol?1 lower than that of ball-milled AlH3. Catalytic mechanism study reveals that the Al2O3 layers on the surface of AlH3 will interact with TiB2 to form Al–Ti–B solid solution, resulting in lattice distortion. Through lattice activation, the decomposition kinetics of AlH3 is improved. This work provides an efficient strategy to achieve both high hydrogen capacity and low decomposition temperature of metastable AlH3 by proper ball milling with metal borides.  相似文献   

14.
NaAlH4 has been doped with ScCl3, TiCl3, CeCl3, and combinations of these additives by high-energy ball milling. The phase composition of the samples after milling was analyzed by X-ray diffraction. Microstructure and catalyst distribution were investigated by scanning electron microscopy. The effect of the additives and their combination on the two dehydrogenation and rehydrogenation steps of suchlike doped NaAlH4 has been studied under isothermal and isobaric conditions by thermogravimetry under a H2 back pressure of 1 bar. From these studies it turned out that ScCl3-doped NaAlH4 was superior to all other dopants and combinations investigated, both for dehydrogenation and rehydrogenation. For this dopant, the influence of the temperature on the kinetics of each single dehydrogenation and rehydrogenation step and the dehydrogenation kinetics in dependence on the H2 back pressure were studied in detail.  相似文献   

15.
Here we present the development of an aluminium alloy based hydrogen storage tank, charged with Ti-doped sodium aluminium hexahydride Na3AlH6. This hydride has a theoretical hydrogen storage capacity of 3 mass-% and can be operated at lower pressure compared to sodium alanate NaAlH4. The tank was made of aluminium alloy EN AW 6082 T6. The heat transfer was realised through an oil flow in a bayonet heat exchanger, manufactured by extrusion moulding from aluminium alloy EN AW 6060 T6. Na3AlH6 is prepared from 4 mol-% TiCl3 doped sodium aluminium tetrahydride NaAlH4 by addition of two moles of sodium hydride NaH in ball milling process. The hydrogen storage tank was filled with 213 g of doped Na3AlH6 in dehydrogenated state. Maximum of 3.6 g (1.7 mass-% of the hydride mass) of hydrogen was released from the hydride at approximately 450 K and the same hydrogen mass was consumed at 2.5 MPa hydrogenation pressure. 45 cycle tests (rehydrogenation and dehydrogenation) were carried out without any failure of the tank or its components. Operation of the tank under real conditions indicated the possibility for applications with stationary HT-PEM fuel cell systems.  相似文献   

16.
In present paper, different sizes of CeO2 nanoparticles were synthesized by ball milling and their effect on the absorption kinetics and decomposition temperature of MgH2 was studied. It was found that a small amount of admixing of the above said catalysts with MgH2 exhibits improved hydrogen storage properties. Among these different sizes of CeO2 nanoparticles, 2 weight % admixed CeO2 with a particle size of ∼10–15 nm led to decrease in desorption temperature by ∼50 K. Moreover, it also shows 1.5 times better absorption kinetics with respect to pure MgH2. The samples were characterized using SEM, TEM and XRD techniques. The hydrogenation/dehydrogenation properties were measured by gas reaction controller.  相似文献   

17.
In this study, various nanoscale metal oxide catalysts, such as CeO2, TiO2, Fe2O3, Co3O4, and SiO2, were added to the LiBH4/2LiNH2/MgH2 system by using high-energy ball milling. Temperature programmed desorption and MS results showed that the Li–Mg–B–N–H/oxide mixtures were able to dehydrogenate at much lower temperatures. The order of the catalytic effect of the studied oxides was Fe2O3 > Co3O4 > CeO2 > TiO2 > SiO2. The onset dehydrogenation temperature was below 70 °C for the samples doped with Fe2O3 and Co3O4 with 10 wt.%. More than 5.4 wt.% hydrogen was released at 140 °C. X-ray diffraction indicated that the addition of metal oxides inhibited the formation of Mg(NH2)2 during ball milling processes. It is thought that the changing of the ball milling products results from the interaction of oxide ions in metal oxide catalysts with hydrogen atoms in MgH2. The catalytic effect depends on the activation capability of oxygen species in metal oxides on hydrogen atoms in hydrides.  相似文献   

18.
The microstructure of MgH2 with 1 mol% NbF5, prepared by high-energy ball milling (HEBM), was studied using high resolution transmission electron microscopy (HR-TEM) with an X-ray energy dispersive spectrometer (EDS) before and after hydrogen sorption cycles. The TEM samples were prepared without any air exposure by a novel, focused ion beam (FIB) system specially designed for highly air sensitive materials. During HEBM, the doping agent, NbF5, was distributed as an extremely thin, film-like, amorphous phase along the grain boundaries of the nanocrystalline MgH2. After 10 sorption cycles, amorphous Nb-F phase was transformed into crystalline Nb hydrides. It is believed that the Nb hydride played a decisive role in improving the sorption kinetics of MgH2.  相似文献   

19.
A two-step ball-milling method has been provided to synthesize Mg(BH4)2 using NaBH4 and MgCl2 as starting materials. The method offers high yield and high purity (96%) of the compound. The as-synthesized Mg(BH4)2 is then combined with LiAlH4 by ball-milling in order to form new multi-hydride systems with high hydrogen storage properties. The structure, the dehydrogenation and the reversibility of the combined systems are studied. Analyses show that a metathesis reaction takes place between Mg(BH4)2 and LiAlH4 during milling, forming Mg(AlH4)2 and LiBH4. Mg(BH4)2 is excessive and remains in the ball-milled product when the molar ratio of Mg(BH4)2 to LiAlH4 is over 0.5. The onset dehydrogenation temperature of the combined systems is lowered to ca. 120 °C, which is much lower than that of either Mg(BH4)2 or LiAlH4. The dehydrogenation capacities of the combined systems below 300 °C are all higher than that of both Mg(BH4)2 and LiAlH4. The combined systems are reversible for hydrogen storage at moderate hydrogenation condition, and rapid hydrogenation occurred within the initial 30 min. Moreover, the remained Mg(BH4)2 in the combined systems is found also partially reversible. The mechanism of the enhancement of the hydrogen storage properties and the dehydrogenation/hydrogenation process of the combined systems were discussed.  相似文献   

20.
The effect of NbF5 on the hydrogen sorption performance of NaAlH4 has been investigated. It was found that the dehydrogenation/hydrogenation properties of NaAlH4 were significantly enhanced by mechanically milling with 3 mol% NbF5. Differential scanning calorimetry results indicate that the ball-milled NaAlH4-0.03NbF5 sample lowered the completion temperature for the first two steps dehydrogenation by 71 °C compared to the pristine NaAlH4 sample. Isothermal hydrogen sorption measurements also revealed a significant enhancement in terms of the sorption rate and capacity, in particular, at reduced operation temperatures. The apparent activation energy for the first-step and the second-step dehydrogenation of the NaAlH4-0.03NbF5 sample is estimated to be 88.2 kJ/mol and 102.9 kJ/mol, respectively, by using Kissinger’s approach, which is much lower than for pristine NaAlH4, indicating the reduced kinetic barrier. The rehydrogenation kinetics of NaAlH4 was also improved with 3 mol% NbF5 doping, absorbing ∼1.7 wt% hydrogen at 150 °C for 2 h under ∼5.5 MPa hydrogen pressure. In contrast, no hydrogen was absorbed by the pristine NaAlH4 sample under the same conditions. The formation of Na3AlH6 was detected by X-ray diffraction on the rehydrogenated NaAlH4-0.03NbF5 sample. Furthermore, the structural changes in the NbF5-doped NaAlH4 sample after ball milling and the hydrogen sorption were carefully examined, and the active species and mechanism of catalysis in NbF5-doped NaAlH4 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号