首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated mechanisms for enhancement of peroxynitrite (OONO-; 5 microM)-evoked [3H] gamma-aminobutyric acid (GABA) release. Hydroxyl radical scavengers such as N,N'-dimethylthiourea (DMTU), mannitol, and uric acid, significantly increased OONO--evoked [3H]GABA release, whereas urea showed no effects on the release. Removal of Ca2+ from incubation buffer abolished the enhancement of the release by DMTU, although DMTU showed no effects on the basal release with and without Ca2+ in extracellular space. These results indicate that hydroxyl radical scavengers facilitate OONO--evoked [3H]GABA release dependent on Ca2+.  相似文献   

2.
The effects of external pH (pHout) variations on the Na+ and on the Ca2+ dependent fractions of the evoked amino acid neurotransmitter release were separately investigated, using GABA as a model transmitter. In [3H]GABA loaded mouse brain synaptosomes, the external acidification (pHout 6.0) markedly decreased the Na+ dependent fraction of [3H]GABA release evoked by veratridine (10 microM) in the absence of external Ca2+, as well as the Ca2+ dependent fraction of [3H]GABA release evoked by high (20 mM) K+ in the absence of external Na+. The depolarization-induced elevation of [Na(i)] (monitored in synaptosomes loaded with the Na+ indicator dye, SBFI) and the depolarization-induced elevation of [Ca(i)] (monitored in synaptosomes loaded with the Ca2+ indicator dye fura-2) were also markedly decreased at pHout 6. On the contrary, the external alkalinization (pHout 8) facilitated all the above responses. A slight increase of the baseline release of the [3H]GABA was observed when pHout was changed from 7.4 to 8. This effect was only observed in the presence of Ca2+. pHout changes from 7.4 to 6 or to 7 did not modify the baseline release of the transmitter. All the effects of pHout variations on [3H]GABA release were independent on the presence of HCO3-. It is concluded that external H+ regulate amino acid neurotransmitter release by their actions on presynaptic Na+ channels, as well as on presynaptic Ca2+ channels.  相似文献   

3.
The specific inhibitor of the gamma-aminobutyric acid (GABA) carrier, NNC-711, (1-[(2-diphenylmethylene)amino]oxyethyl)- 1,2,5,6-tetrahydro-3-pyridine-carboxylic acid hydrochloride, blocks the Ca(2+)-independent release of [3H]GABA from rat brain synaptosomes induced by 50 mM K+ depolarization. Thus, in the presence of this inhibitor, it was possible to study the Ca(2+)-dependent release of [3H]GABA in the total absence of carrier-mediated release. Reversal of the Na+/Ca2+ exchanger was used to increase the intracellular free Ca2+ concentration ([Ca2+]i) to test whether an increase in [Ca2+]i alone is sufficient to induce exocytosis in the absence of depolarization. We found that the [Ca2+]i may rise to values above 400 nM, as a result of Na+/Ca2+ exchange, without inducing release of [3H]GABA, but subsequent K+ depolarization immediately induced [3H]GABA release. Thus, a rise of only a few nanomolar Ca2+ in the cytoplasm induced by 50 mM K+ depolarization, after loading the synaptosomes with Ca2+ by Na+/Ca2+ exchange, induced exocytotic [3H]GABA release, whereas the rise in cytoplasmic [Ca2+] caused by reversal of the Na+/Ca2+ exchanger was insufficient to induce exocytosis, although the value for [Ca2+]i attained was higher than that required for exocytosis induced by K+ depolarization. The voltage-dependent Ca2+ entry due to K+ depolarization, after maximal Ca2+ loading of the synaptosomes by Na+/Ca2+ exchange, and the consequent [3H]GABA release could be blocked by 50 microM verapamil. Although preloading the synaptosomes with Ca2+ by Na+/Ca2+ exchange did not cause [3H]GABA release under any conditions studied, the rise in cytoplasmic [Ca2+] due to Na+/Ca2+ exchange increased the sensitivity to external Ca2+ of the exocytotic release of [3H]GABA induced by subsequent K+ depolarization. Thus, our results show that the vesicular release of [3H]GABA is rather insensitive to bulk cytoplasmic [Ca2+] and are compatible with the view that GABA exocytosis is triggered very effectively by Ca2+ entry through Ca2+ channels near the active zones.  相似文献   

4.
In the present work we investigated the mechanisms controlling the release of acetylcholine (ACh) and of gamma-aminobutyric acid (GABA) from cultures of amacrine-like neurons, containing a subpopulation of cells which are simultaneously GABAergic and cholinergic. We found that 81.2 +/- 2.8% of the cells present in the culture were stained immunocytochemically with an antibody against choline acetyltransferase, and 38.5 +/- 4.8% of the cells were stained with an antibody against GABA. Most of the cells containing GABA (87.0 +/- 2.9%) were cholinergic. The release of acetylcholine and GABA was mostly Ca2+-dependent, although a significant release of [3H]GABA occurred by reversal of its transporter. Potassium evoked the Ca2+-dependent release of [3H]GABA and [3H]acetylcholine, with EC50 of 31.0 +/- 1.0 mm and 21.6 +/- 1.1 mm, respectively. The Ca2+-dependent release of [3H]acetylcholine was significantly inhibited by 1 micrometer tetrodotoxin and by low (30 nm) omega-conotoxin GVIA (omega-CgTx GVIA) concentrations, or by high (300 nm) nitrendipine (Nit) concentrations. On the contrary, the release of [14C]GABA was reduced by 30 nm nitrendipine, or by 500 nm omega-CgTx GVIA, but not by this toxin at 30 nm. The release of either transmitters was unaffected by 200 nm omega-Agatoxin IVA (omega-Aga IVA), a toxin that blocks P/Q-type voltage-sensitive Ca2+ channels (VSCC). The results show that Ca2+-influx through omega-CgTx GVIA-sensitive N-type VSCC and through Nit-sensitive L-type VSCC induce the release of ACh and GABA. However, the significant differences observed regarding the Ca2+ channels involved in the release of each neurotransmitter suggest that in amacrine-like neurons containing simultaneously GABA and acetylcholine the two neurotransmitters may be released in distinct regions of the cells, endowed with different populations of VSCC.  相似文献   

5.
This study sought to determine the potential role of nitric oxide (NO) in N-methyl-D-aspartate (NMDA)-stimulated efflux of [14C] gamma-aminobutyric acid (GABA) and [3H]acetylcholine from striatal slices in vitro. In Mg2+-free buffer, NMDA-stimulated [14C]GABA and [3H]acetylcholine release were inhibited by the guanylate cyclase inhibitor, 1 H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), and, to a lesser extent, by the nitric oxide synthase inhibitor, nitroarginine (N-Arg). Since reversal of catecholamine transporters previously has been implicated in the mechanism underlying NO-induced catecholamine release, we used the GABA transport inhibitor, 1-(2-(((diphenylmethylene)imino)oxy)ethyl)-1,2,5,6-tetrahydro-3-py ridine-carboxylic acid hydrochloride (NNC-711), to address the role of GABA transport in NArg-sensitive NMDA-induced release. NNC-711 inhibited NMDA-stimulated [14C]GABA efflux by 50%, confirming our previous report that NMDA-stimulated GABA release is partially dependent on reversal of the transporter. The effect of N-Arg in the presence of NNC-711 was similar to its effect in the absence of the transport inhibitor, suggesting that reversal of the transporter is not involved in the NO component of NMDA-stimulated [14C]GABA release. These data suggest that glutamatergic transmission through striatal NMDA receptors is partially mediated through activation of the NO/guanylate cyclase pathway and that this mechanism may contribute to the tetrodotoxin sensitivity of NMDA-induced release of GABA and acetylcholine in the striatum.  相似文献   

6.
We measured the effect of high PCO (500-550 Torr) on the pHi and [Ca2+]i in cultured glomus cells of adult rat carotid body (CB) as a test of the two models currently proposed for the mechanism of CB chemoreception. The metabolic model postulates that the rise in glomus cell [Ca2+]i, the initiating reaction in the signalling pathway leading to chemosensory neural discharge, is due to [Ca2+] release from intracellular Ca2+ stores. The membrane potential model postulates that the rise in [Ca2+]i comes from influx of extracellular Ca2+ through voltage-dependent Ca2+ channels (VDCC) of the L-type. High PCO did not change pHi at PO2 of 120-135 Torr, showing that CO-induced changes in [Ca2+]i are not due to changes in pHi. High PCO caused a highly significant rise in [Ca2+]i from 90+/-12 nM to 675+/-65 nM, both in the absence and in the presence of 200 microM CdCl2, a potent blocker of L-type VDCCs. This result is fully consistent with release of Ca2+ from glomus cell intracellular stores according to metabolic model, but inconsistent with influx of extracellular Ca2+ through VDCCs according to the membrane potential model.  相似文献   

7.
We studied the effect of endogenous adenosine on the release of [3H]acetylcholine ([3H]ACh) in cultures enriched (96.4+/-0.4%) in rat cholinergic amacrine-like neurons, as determined by labeling with an antibody against choline acetyltransferase. A small population of these cells also contained GABA. Using these cultures we observed that both [3H]ACh release, which was largely Ca2+-dependent, and 45Ca2+ influx, evoked by depolarization with 50 mM KCl, were increased when adenosine A1 receptor activation was prevented by removal of endogenous adenosine with adenosine deaminase, or by application of the A1 receptor antagonist DPCPX. Our results indicate that, in cultured rat amacrine-like neurons, the activation of A1 receptors decreases calcium influx and, thereby, inhibits [3H]ACh release.  相似文献   

8.
Using native plasma membrane vesicle suspensions from the rat cerebral cortex under conditions designed to alter intravesicular [Ca2+], we found that Ca2+ induced 47 +/- 5% more influx of [3H]GABA, [3H]D-aspartate and [3H]glycine at 37 degrees C with half-times 1.7 +/- 0.5, 1.3 +/- 0.4 and 1.3 +/- 0.4 min, respectively. We labelled GABA transporter sites with the uptake inhibitor, [3H]-(R,S)-N-[4,4-bis(3-methyl-2-thienyl)but-3-en-1-yl]nipecotic acid and found that Ca2+ induced a partial dissociation of the bound inhibitor from GABA transporter sites with a similar half-time. By means of rapid kinetic techniques applied to native plasma membrane vesicle suspensions, containing synaptic vesicles stained with the amphipathic fluorescent styryl membrane probe N-(3-triethylammoniumpropyl)-4-[4-(dibutylamino)styryl]pyrid inium dibromide, we have measured the progress of the release and reuptake of synaptic vesicles in response to Ca2+ and high-[K+] depolarization in the 0.0004-100 s range of time. Synaptic vesicle exocytosis, strongly influenced by external [Ca2+], appeared with the kinetics accelerated by depolarization. These results are consistent with the potential involvement of Ca2+ in taking low-affinity transporters to the plasma membrane surface via exocytosis.  相似文献   

9.
Cultured rat cerebellar granule cells depolarized by high KCl, display a large component of Ca2+ influx through L-type voltage-dependent Ca2+ channels as defined by a sensitivity to 1 microM nifedipine. This Ca2+ influx is not coupled to neurotransmitter exocytosis but has implications for neuronal development. KCl stimulation in the absence of external Ca2+ followed by the readdition of Ca2+ allows the coupling of a class of L-type Ca2+ channels to neurotransmitter exocytosis as assessed by loading of glutamatergic pools with [3H]-D-aspartate. KCl stimulation in the absence of external Ca2+ ('predepolarization') enhances tyrosine phosphorylation of several cellular proteins, and inhibitors of tyrosine kinases block both phosphorylation and the neurotransmitter release coupled to the L-type Ca2+ channel. More specifically, an inhibitor of src family tyrosine kinases, PP1, blocks the effects of predepolarization suggesting a role for a src family kinase in the process. Furthermore, L-type Ca2+ channel recruitment and modulation of release could be activated with the tyrosine phosphatase inhibitor sodium orthovanadate. The phosphoproteins enhanced by predepolarization, which include the cytoskeletal proteins focal adhesion kinase (FAK) and vinculin, are also highly phosphorylated early on in culture when neurite outgrowth occurs. As the neurons develop a network of neurites, both tyrosine phosphorylation and L-type Ca2+ channel activity decrease. These results show a novel mechanism for the recruitment of L-type Ca2+ channels and their coupling to neurotransmitter release which involves tyrosine phosphorylation. This phenomenon has a role in cerebellar granule cell development.  相似文献   

10.
BACKGROUND: Potentiation by general anesthetics of gamma-aminobutyric acid (GABA)-mediated inhibitory transmission in the central nervous system is attributed to GABA(A) receptor-mediated postsynaptic effects. However, the role of presynaptic mechanisms in general anesthetic action is not well characterized, and evidence for anesthetic effects on GABA release is controversial. The effects of several intravenous general anesthetics on [3H]GABA release from rat cerebrocortical synaptosomes (isolated nerve terminals) were investigated. METHODS: Purified synaptosomes were preloaded with [3H]GABA and superfused with buffer containing aminooxyacetic acid and nipecotic acid to inhibit GABA metabolism and reuptake, respectively. Spontaneous and elevated potassium chloride depolarization-evoked [3H]GABA release were evaluated in the superfusate in the absence or presence of various anesthetics, extracellular Ca2+, GABA receptor agonists and antagonists, and 2,4-diaminobutyric acid. RESULTS: Propofol, etomidate, pentobarbital, and alphaxalone, but not ketamine, potentiated potassium chloride-evoked [3H]GABA release (by 1.3 to 2.9 times) in a concentration-dependent manner, with median effective concentration values of 5.4 +/- 2.8 microM (mean +/- SEM), 10.1 +/- 2.1 microM, 18.8 +/- 5.8 microM, and 4.4 +/- 2.0 microM. Propofol also increased spontaneous [3H]GABA release by 1.7 times (median effective concentration = 7.1 +/- 3.4 microM). Propofol facilitation of [3H]GABA release was Ca2+ dependent and inhibited by bicuculline and picrotoxin, but was insensitive to pretreatment with 2,4-diaminobutyric acid, which depletes cytoplasmic GABA pools. CONCLUSIONS: Low concentrations of propofol, etomidate, pentobarbital, and alphaxalone facilitated [3H]GABA release from cortical nerve terminals. General anesthetics may facilitate inhibitory GABA-ergic synaptic transmission by a presynaptic mechanism in addition to their well-known postsynaptic actions.  相似文献   

11.
We investigated the effects of hydroxyl radical scavengers on peroxynitrite (OONO-)-evoked acetylcholine (ACh) release from mouse cerebral cortical neurons. N,N'-dimethylthiourea, a hydroxyl radical scavenger, dose-dependently increased OONO(-)-evoked ACh release. Other hydroxyl radical scavengers such as uric acid and mannitol, also enhanced OONO(-)-evoked ACh release, although these enhancing effects were not found in the absence of OONO-. In addition, OONO(-)-induced [45Ca2+]influx was significantly facilitated by the scavengers, whereas no effects of the scavengers on [45Ca2+]influx was observed in the absence of OONO-. These results indicate that hydroxyl radical scavengers enhance OONO(-)-evoked ACh release via the facilitation of OONO(-)-induced [45Ca2+]influx.  相似文献   

12.
The precise mechanisms by which nitric oxide (NO) decreases free [Ca2+]i, inhibits Ca2+ influx, and relaxes vascular smooth muscle are poorly understood. In rabbit and mouse aorta, agonist-induced contractions and increases in [Ca2+]i were resistant to nifedipine, suggesting Ca2+ entry through non-L-type Ca2+ channels. Relaxations to NO were inhibited by thapsigargin (TG) or cyclopiazonic acid (CPA) indicating the involvement of sarcoplasmic reticulum ATPase (SERCA). Studies of the effect of NO on [Ca2+]i and the rate of Mn2+ influx with fura-2 fluorometry in rabbit aortic smooth muscle cells in primary culture were designed to test how SERCA is involved in mediating the response to NO. When cells were stimulated with angiotensin II (AII), NO accelerated the removal of Ca2+ from the cytoplasm, decreased [Ca2+]i, and inhibited Ca2+ and Mn2+ influx. Inhibition of SERCA abolished all the effects of NO. In contrast, inhibition of the Na+/Ca2+exchanger or the plasma membrane Ca2+ ATPase had no influence on the ability of NO to decrease [Ca2+]i. NO maximally decreased [Ca2+]i within 5 s, whereas significant inhibition of AII-induced Ca2+ and Mn2+ influx required more than 15 s. The inhibition of cation influx strictly depended on [Ca2+]o and functional SERCA, suggesting that during the delay before NO inhibits Ca2+ influx, the influx of Ca2+ and the uptake into intracellular stores are required. In the absence of [Ca2+]o, NO diminished the AII-induced [Ca2+]i transient by a SERCA-dependent mechanism and increased the amount of Ca2+ in the stores subsequently released by ionomycin. The present study indicates that the initial rapid decrease in [Ca2+]i caused by NO in vascular smooth muscle is accounted for by the uptake of Ca2+ by SERCA into intracellular stores. It is proposed that the refilling of the stores inhibits store-operated Ca2+ influx through non-L-type Ca2+ conducting ion channels and that this maintains the decrease in [Ca2+]i and NO-induced relaxation.  相似文献   

13.
1. The contractile response to nitric oxide (NO) in ral ileal myenteric plexus-longitudinal muscle strips was pharmacologically analysed. 2. NO (10(-7) M) induced only contraction while 10(-6) M NO induced contraction followed by relaxation. Methylene blue (up to 10(-4) M) did not affect the NO-induced contractions but significantly reduced the relaxation evoked by 10(-6) M NO. Administration of 8-bromo-cyclic GMP (10(-6)-10(-4) M) only induced relaxation. 3. Sodium nitroprusside (SNP; 10(-7)-10(-5) M) induced concentration-dependent contractions per se; the contractile response to NO, administered within 10 min after SNP, was concentration-dependently reduced. The guanosine 3':5'-cyclic monophosphate (cyclic GMP) content of the tissues was not increased during contractions with 10(-8) M NO and 10(-6) M SNP; it was increased by a factor of 2 during contraction with 10(-7) M NO, and by a factor of 12 during relaxation with 3 x 10(-6) M NO. 4. The NO-induced contractions were not affected by ryanodine (3 x 10(-5) M) but were concentration-dependently reduced by nifedipine (10(-8)-10(-7) M) and apamin (3 x 10(-9)-3 x 10(-8) M). 5. These results suggest that cyclic GMP is not involved in the NO-induced contraction in the rat small intestine. The NO-induced contraction is related to extracellular Ca2+ influx through L-type Ca2+ channels, that might be activated in response to the closure of Ca(2+)-dependent K+ channels.  相似文献   

14.
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been reported to increase intracellular Ca2+ concentrations ([Ca2+]i) and catecholamine release in adrenal chromaffin cells. We measured [Ca2+]i with fura-2 and recorded ion currents and membrane potentials with the whole cell configuration of the patch-clamp technique to elucidate the mechanism of PACAP-induced [Ca2+]i increase in bovine adrenal chromaffin cells. PACAP caused [Ca2+]i to increase due to Ca2+ release and Ca2+ influx, and this was accompanied by membrane depolarization and inward currents. The Ca2+ release was suppressed by ryanodine, an inhibitor of caffeine-sensitive Ca2+ stores, but was unaffected by cinnarizine, an inhibitor of inositol trisphosphate-induced Ca2+ release. Ca2+ influx and inward currents were both inhibited by replacement of extracellular Na+, and Ca2+ influx was inhibited by nicardipine, an L-type Ca2+ channel blocker, or by staurosporine, a protein kinase C (PKC) inhibitor, but was unaffected by a combination of omega- conotoxin-GVIA, omega-agatoxin-IVA, and omega-conotoxin- MVIIC, blockers of N-, P-, and Q-type Ca2+ channels. Moreover, 1-oleoyl-2-acetyl-sn-glycerol, a PKC activator, induced inward currents and Ca2+ influx. These results indicate that PACAP causes both Ca2+ release, mainly from caffeine-sensitive Ca2+ stores, and Ca2+ influx via L-type Ca2+ channels activated by membrane depolarization that depends on PKC-mediated Na+ influx.  相似文献   

15.
The present study explored the role of different sub-types of voltage-activated Ca2+ channels (VACCs) in mediating veratridine-evoked [3H]dopamine (DA) release from rat striatal slices. The release of [3H]DA evoked by veratridine (25 microM) decreased by 50.6+/-2.9% (n=8) in the absence of calcium and was completely abolished by 1 microM tetrodotoxin. The L-type Ca2+ channel blockers nifedipine (10 microM), nitrendipine (10 microM), diltiazem (10 microM) and verapamil (10 microM) did not modulate this release. Similarly, [3H]DA release was affected neither by the N-type VACC blocker omega-conotoxin-GVIA (1 microM) nor by the selective P-type channel blockers omega-agatoxin-IVA and omega-agatoxin-TK at low nM concentrations (30 nM), indicating no involvement of N- and P-type Ca2+ channels. In contrast, higher concentrations of omega-agatoxin-IVA that would also inhibit Q-type VACCs, blocked the release of [3H]DA by 27.9+/-8.1% (n=5) and 37.5+/-13.6% (n=3) at 0.3 and 1 microM, respectively. In addition, application of the Q-type Ca2+ channel blocker omega-conotoxin-MVIIC (0.01-3 degrees M) reduced [3H]DA release in a concentration-dependent manner, with maximum inhibition of 35.3+/-4.1% at 3 microM (n=5). On the basis of these results, it is concluded that the Ca2+ channels that participate in veratridine-evoked [3H]DA release are Q-type Ca2+ channels.  相似文献   

16.
Our earlier observations showed that L-lysine enhanced the activity of diazepam against seizures induced by pentylenetetrazol (PTZ), and increased the affinity of benzodiazepine receptor binding in a manner additive to that caused by gamma-aminobutyric acid (GABA). The present paper provides additional evidence to show that L-lysine has central nervous system depressant-like characteristics. L-lysine enhanced [3H]flunitrazepam (FTZ) binding in brain membranes was dose-dependent and stimulated by chloride, bromide and iodide, but not fluoride. Enhancement of [3H]FTZ binding by L-lysine at a fixed concentration was increased by GABA but inhibited by pentobarbital between 10(-7) to 10(-3)M. While GABA enhancement of [3H]FTZ binding was inhibited by the GABA mimetics imidazole acetic acid and tetrahydroisoxazol pyridinol, the enhancement by pentobarbital and L-lysine of [3H]FTZ binding was dose-dependently increased by these two GABA mimetics. The above results suggest that L-lysine and pentobarbital acted at the same site of the GABA/benzodiazepine receptor complex which was different from the GABA binding site. The benzodiazepine receptor antagonist imidazodiazepine Ro15-1788 blocked the antiseizure activity of diazepam against PTZ. Similar to pentobarbital, the anti-PTZ effect of L-lysine was not blocked by Ro15-1788. Picrotoxinin and the GABA, receptor antagonist bicuculline partially inhibited L-lysine's enhancement of [3H]FTZ binding with the IC50s of 2 microM and 0.1 microM, respectively. The convulsant benzodiazepine Ro5-3663 dose-dependently inhibited the enhancement of [3H]FTZ binding by L-lysine. This article shows the basic amino acid L-lysine to have a central nervous system depressant characteristics with an anti-PTZ seizure activity and an enhancement of [3H]FTZ binding similar to that of barbiturates but different from GABA.  相似文献   

17.
The aim of the study was to elucidate the vasodilatory mechanism due to Cu2+ by assessing nitric oxide (NO) production as determined by NOx (NO, NO2-, and NO3-) that is released from human pulmonary arterial endothelial cell (HPAEC) monolayers using a NO chemiluminescence analyzer, and also to assess Ca2+ movement using 45Ca and fura 2 in HPAEC. Cu2+ (10(-6)-10(-4) M) significantly increased NO production in a dose-dependent manner when extracellular Ca2+ was present. 45Ca influx into the adherent cells was dose-dependently enhanced by Cu(2+) (10(-6)-10(-4) M), but not by Mn(2+), Zn(2+) or Fe(2+). [Ca2+]i, measured by monitoring the fluorescence changes of fura 2, was significantly elevated in the presence of Cu2+. The increase in [Ca2+]i induced by Cu2+ was inhibited by either diethyldithiocarbamate (DDC) or the depletion of extracellular Ca2+. The dihydropyridine receptor agonist, BayK8644, significantly attenuated the Cu2+-induced increase in [Ca2+]i in a dose dependent manner and nitrendipine or nifedipine, the dihydropyridine receptor antagonists, dose-dependently inhibited a Cu2+-induced increase in [Ca2+]i. These results suggest that Cu2+ activates eNOS through the mechanism of [Ca2+]i elevation due to Ca2+ influx into HPAEC and that the Cu2+-induced [Ca2+]i elevation in HPAEC is likely due to activation of the dihydropyridine-like receptors.  相似文献   

18.
In rat cortical primary cultures, group II- and III-metabotropic glutamate receptor-selective agonists concentration-dependently reduced KCl-induced [3H]GABA release, with IC50 values of 11 nM for LY354740, 80 nM for L(+)-2-amino-4-phosphonobutyric acid (L-AP4), 180 nM for DCG-IV, and 330 nM for L-SOP. The group II antagonists, LY341495 and EGLU, reversed the effect of LY354740, and the group III antagonist MTPG reversed the effect of L-AP4. In the presence of omega-conotoxin GVIA, LY354740 inhibited the remaining [3H]GABA release, whereas L-AP4 was inactive. In contrast, in the presence of nifedipine, L-AP4 inhibited the remaining [3H]GABA release, but LY354740 was no longer active. The PKA inhibitor, H89, blocked the effects of both L-AP4 and LY354740, whereas the PKC inhibitor Ro 31-8220 blocked only the effect of LY354740. Both Ro 31-8220 and H89 reduced the [3H]GABA release to 60% of control. In whole-cell, voltage-clamp experiments, LY354740 and L-AP4 inhibited voltage-gated calcium channel currents with IC50 values of 28 nM and 22 microM, respectively. The results suggest that, in these cells, KCl-induced [3H]GABA release is modulated by two different mechanisms, one involving group II receptors and a direct control of the Ca2+ channel activity, and the other mediated by group III receptors and possibly involving a regulation located downstream of the Ca2+ channel activation.  相似文献   

19.
Contraction in smooth muscle is triggered by an increase in cytoplasmic free calcium ([Ca2+]i) which depends on both Ca2+ influx through L-type Ca2+ channels and Ca2+ release from the sarcoplasmic reticulum (SR). Two mechanisms have been shown to be involved in SR Ca2+ release, one is stimulated by Ca2+ and involved ryanodine-sensitive Ca2+-release channels; the other is stimulated by an increase in inositol 1,4,5-trisphosphate (InsP3) generation induced by various mediators and involved InsP3-sensitive Ca2+ release channels. Here, we examined the effects of angiotensin II on [Ca2+]i in single rat portal vein myocytes using both the whole cell patch-clamp method and a laser scanning confocal microscope. Elementary Ca2+ release events (Ca2+ sparks) were obtained spontaneously or in response to L-type Ca2+ channel current activation, and resulted from activation of ryanodine-sensitive Ca2+-release channels in the SR. We show that angiotensin AT1 receptors stimulate Ca2+ sparks through activation of L-type Ca2+ channels without involving InsP3-induced Ca2+ release. This novel transduction pathway may be a common mechanism for vasoconstrictors which do not stimulate generation of chemical second messengers.  相似文献   

20.
Binding of [3H]cyclohexyladenosine (CHA) to the cellular fractions and P2 subfractions of the goldfish brain was studied. The A1 receptor density was predominantly in synaptosomal membranes. In goldfish brain synaptosomes (P2), 30 mM K+ stimulated glutamate, taurine and GABA release in a Ca(2+)-dependent fashion, whereas the aspartate release was Ca(2+)-independent. Adenosine, R-phenylisopropyladenosine (R-PIA) and CHA (100 microM) inhibited K(+)-stimulated glutamate release (31%, 34% and 45%, respectively). All of these effects were reversed by the selective adenosine A1 receptor antagonist, 8-cyclopentyltheophylline (CPT). In the same synaptosomal preparation, K+ (30 mM) stimulated Ca2+ influx (46.8 +/- 6.8%) and this increase was completely abolished by pretreatment with 100 nM omega-conotoxin. Pretreatment with 100 microM R-PIA or 100 microM CHA, reduced the evoked increase of intra-synaptosomal Ca2+ concentration, respectively by 37.7 +/- 4.3% and 39.7 +/- 9.0%. A possible correlation between presynaptic A1 receptor inhibition of glutamate release and inhibition of calcium influx is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号