首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficacy of conjugated linoleic acid (CLA) supplements containing trans-10, cis-12 for reducing milk fat synthesis has been well documented in dairy cows, but studies with other ruminant species are less convincing, and there have been no investigations of this in sheep. Therefore, the current study was designed to determine whether trans-10, cis-12 CLA would inhibit milk fat synthesis in sheep. Twenty multiparous ewes in early lactation were paired and randomly allocated to 2 treatments: grass hay plus concentrate either unsupplemented (control) or supplemented with lipid-encapsulated CLA to provide 2.4 g/d of trans-10, cis-12 CLA. The CLA dose was based on published responses of dairy cows extrapolated to ewes on a metabolic body weight basis. The experimental design was a 2-period crossover with 10-d treatment periods separated by a 10-d interval. Compared with the control, CLA supplementation reduced milk fat content from 6.4 to 4.9% and reduced fat yield from 95 to 80 g/d. The CLA treatment also increased milk yield from 1,471 to 1,611 g/d and increased protein yield from 68 to 73 g/d. Milk protein content and DMI were unaffected by treatment. The reduction in milk fat yield was due to decreases in both de novo fatty acid synthesis and uptake of preformed fatty acids. Milk fat content of trans-10, cis-12 CLA was < 0.01 and 0.12 g/100 g of fatty acids for the control and CLA treatments, respectively. The transfer efficiency of trans-10, cis-12 CLA from the dietary supplement into milk fat was 3.8%. Results of the present study demonstrate that a CLA supplement containing trans-10, cis-12 CLA reduces milk fat synthesis in lactating sheep in a manner similar to dairy cows when fed at an equivalent dose (metabolic body weight basis). Furthermore, the nutrients spared by the reduction in milk fat coincided with an increase in milk and milk protein yield.  相似文献   

2.
《Journal of dairy science》2022,105(1):255-268
A major proportion of milk rumenic acid (RA; cis-9,trans-11 CLA) is synthesized through mammary Δ9-desaturation of vaccenic acid (VA; trans-11 18:1). Diet composition may determine the relative contribution of this endogenous synthesis to milk RA content, with effects that might differ between ruminant species. However, this hypothesis is mostly based on estimated values, proxies of stearoyl-CoA desaturase (SCD) activity, and indirect comparisons between publications in the literature. With the aim of providing new insights into this issue, in vivo Δ9-desaturation of 13C-labeled VA (measured via milk 13C-VA and -RA secretion) was directly compared in sheep and goats fed a diet without lipid supplementation or including 2% of linseed oil. Four Assaf sheep and 4 Murciano-Granadina goats were used in a replicated 2 × 2 crossover design to test the effects of the 2 dietary treatments during 2 consecutive 25-d periods. On d 22 of each period, 500 mg of 13C-VA were i.v. injected to each animal. Dairy performance, milk fatty acid profile, including isotope analysis, and mammary mRNA abundance of genes coding for SCD were examined on d 21 to 25 of each period. Supplementation with linseed oil improved milk fat concentration and increased the content of milk VA and RA. However, the isotopic tracer assay suggested no variation in the relative proportion of VA desaturated to milk RA, and the percentage of this CLA isomer deriving from SCD activity would remain constant regardless of dietary treatment. These results put into question a major effect of lipid supplementation on the endogenous synthesis of milk RA and support that mammary Δ9-desaturation capacity would not represent a limiting factor when designing feeding strategies to increase milk RA content. The lack of diet-induced effects was common to caprines and ovines, but inherent interspecies differences in mammary lipogenesis were found. Thus, the higher proportions of VA desaturation and endogenous synthesis of milk RA in sheep supported a greater SCD activity compared with goats, a finding that was not associated with the similar mRNA abundance of SCD1 in the 2 species. On the other hand, transfer efficiency of the isotopic tracer to milk was 37% higher in caprine than in ovine, suggesting a greater efficiency in mammary fatty acid uptake from plasma in caprine.  相似文献   

3.
A genome scan was conducted on the basis of the daughter design to detect quantitative trait loci (QTL) influencing udder morphology traits in Spanish Churra dairy sheep. A total of 739 ewes belonging to 11 half-sib families were genotyped for 182 microsatellite markers covering 3,248.2 cM (Kosambi) of the ovine autosomal genome. Phenotypic traits included scores for 5 linear udder traits: udder depth, udder attachment, teat placement, teat size, and udder shape. Quantitative measurements for the QTL analysis were calculated for each trait from evaluation scores using within-family yield deviations corrected for fixed environmental effects. Joint analysis of all families using Haley-Knott regression identified 5 regions that exceeded the 5% chromosome-wise significance threshold on chromosomes 7, 14, 15, 20, and 26. Based on the across-family results, a within-family analysis was carried out to identify families segregated according to the QTL and to estimate the QTL effect. The allelic substitution effect for individual families ranged from 0.47 to 1.7 phenotypic standard deviation units for udder shape on chromosome 15 and udder depth on chromosome 14, respectively. These QTL regions provide a starting point for further research aimed at the characterization of genetic variability involved in udder traits in Churra sheep. This paper presents the first report of a sheep genome scan for udder-related traits in a dairy sheep outbred population.  相似文献   

4.
The aim of the present study was to investigate the genetic control of the fatty acid (FA) composition in milk from 3 breeds of sheep: Altamurana, Gentile di Puglia, and Sarda. Single nucleotide polymorphisms within genes, encoding enzymes putatively involved in the synthesis and metabolism of milk fat, were selected for analysis, and the allele substitution effects were determined for 16 genes, which were polymorphic in the 3 sheep breeds, upon the milk fat composition. Four genes (α-1-antichymotrypsin-2; diacylglycerol O-acyltransferase homolog-2; propionyl Coenzyme A carboxylase, β polypeptide; and insulin-like growth factor-I) play a role in the desaturation of stearic FA into polyunsaturated fatty acids. Furthermore, 2 genes (growth hormone receptor and zona pellucida glycoprotein-2) affect the variability of the total fat content in addition to the butyric and stearic FA profile, and the fatty acid synthetase gene has an influence on the medium-chain FA. Milk FA profiles play an important role in dairy sheep farming because they have a large effect on cheese characteristics and also because sheep milk may be marketed as a source of nutraceuticals because it contains higher levels of conjugated linoleic acid than milk from other ruminants. The current study evaluated the global effects of a large number of single nucleotide polymorphisms and haplotypes on traits that are not commonly investigated in sheep but that are potentially very useful for improving milk quality.  相似文献   

5.
Associations between stearoyl-CoA desaturase (SCD) gene polymorphisms and milk production traits (milk, fat, and protein yields, fat and protein contents, somatic cell score) were investigated on a sample of 701 lactations of 313 Italian Holsteins. Test-day records (5,097) were analyzed with a mixed linear model that included the fixed effects of herd, date of test, parity, genotype at the SCD locus, and lactation interval nested within SCD genotype, and the random effect of cow. An effect of the SCD genotype on milk and protein yields was detected, with VV cows producing more milk (about 2 kg/d) and protein (about 0.07 kg/d) compared with AA cows. The contribution of the SCD locus to the phenotypic variance of the 2 traits was about 0.015. These results suggest a possible use of the SCD locus in gene-assisted selection programs for the improvement of milk production traits in dairy cattle, although large-scale studies in different breeds are required.  相似文献   

6.
Olive tree leaves (OTL) and grape marc (GM) are by-products with high linolenic (LNA) and linoleic (LA) acid content, respectively, which can be used as dietary ingredients to increase the cis-9 trans-11 conjugated linoleic acid (CLA) content of milk fat in sheep and goats. An experiment was conducted with 16 Friesian ewes and 16 Alpine goats to study the effect of OTL and GM inclusion in sheep and goat diets on their milk fatty acid profile, with emphasis on cis-9, trans-11 CLA and vaccenic acid (VA). Ewes and the goats were fed the control (C) diets from parturition to the 90 days in milk (DIM) and then both groups were divided into two sub-groups (treatments). The control groups of both species continued to be fed the C diets, whereas the treated groups were gradually switched over a 2-week period (DIM=91-105) from the C diets to that of treatment 1, which contained air-dried OTL. These OTL diets were fed ad libitum for 1 month (DIM=106-135). After that period, the same treated groups, after 2 weeks of gradual adaptation (DIM=136-150), were switched to treatment 2, which contained air-dried GM. The GM diets were fed ad libitum for 1 month (151-180 DIM). Concentrations of polyunsaturated fatty acids (PUFA) and mono-unsaturated fatty acids increased significantly in milk fat of sheep fed OTL v. C. For goats, only the PUFA in milk fat was increased by feeding OTL compared with C. Relative to C, GM increased significantly the concentration of PUFA only in milk fat of sheep. OTL and GM diets increased the cis-9, trans-11 CLA and VA content in milk fat, compared with C, only in sheep. GM caused a sharp increase in 18:0 only in sheep milk fat, while the OTL diet increased significantly the 18:0 in milk fat of goats. GM and OTL diets also had opposite effects on the 18:1/18:0 ratio of sheep milk fat. In conclusion, OTL and GM, when included in sheep diets altered the milk fatty acid profile with a pronounced increase in cis-9, trans-11 CLA and VA contents. The results show that the response of sheep and goats to OTL and GM diets was different, suggesting a species difference that needs further investigation.  相似文献   

7.
The objective of this study was to estimate the genetic variation of ovine milk fatty acid (FA) composition. We collected 4,100 milk samples in 14 herds from 976 Churra ewes sired mostly by 15 AI rams and analyzed them by gas-liquid chromatography for milk fatty acid composition. The studied traits were 12 individual FA contents (proportion in relation to the total amount of FA), 3 groups of fatty acids [saturated fatty acids (SFA), monounsaturated FA (MUFA), and polyunsaturated FA (PUFA)], and 2 FA ratios (n-6:n-3 and C18:2 cis-9,trans-11:C18:1 trans-11). In addition, percentages of fat and protein and daily milk yield were studied. For the analysis, repeatability animal models were implemented using Bayesian methods. In an initial step, univariate methods were conducted to test the hypothesis of the traits showing additive genetic determination. Deviance information criterion and Bayes factor were employed as model choice criteria. All the studied SFA showed additive genetic variance, but the estimated heritabilities were low. Among unsaturated FA (UFA), only C18:1 trans-11 and C18:2 cis-9,cis-12 showed additive genetic variation, their estimated heritabilities being [marginal posterior mean (marginal posterior SD)] 0.02(0.01) and 0.11(0.04), respectively. For the FA groups, only PUFA showed significant additive genetic variation. None of the studied ratios of FA showed additive genetic variation. In second multitrait analyses, genetic correlations between individual FA and production traits, and between groups of FA and ratios of FA and production traits, were investigated. Positive genetic correlations were estimated among medium-chain SFA, ranging from 0 to 0.85, but this parameter was close to zero between long-chain SFA (C16:0 and C18:0). Between long- and medium-chain SFA, estimated genetic correlations were negative, around −0.6. Among those UFA showing significant additive genetic variance, genetic correlations were close to zero. The estimated genetic correlations among all the investigated FA, milk yield, and fat and protein percentages were not different from zero. Our results suggest that low additive genetic variation is involved in the determination of the FA composition of milk fat in Churra sheep under current production conditions, which results in low values of heritabilities.  相似文献   

8.
《Journal of dairy science》2022,105(12):9763-9791
Fourier-transform mid-infrared (FT-MIR) spectroscopy is a high-throughput and inexpensive methodology used to evaluate concentrations of fat and protein in dairy cattle milk samples. The objective of this study was to compare the genetic characteristics of FT-MIR predicted fatty acids and individual milk proteins with those that had been measured directly using gas and liquid chromatography methods. The data used in this study was based on 2,005 milk samples collected from 706 Holstein-Friesian × Jersey animals that were managed in a seasonal, pasture-based dairy system, with milk samples collected across 2 consecutive seasons. Concentrations of fatty acids and protein fractions in milk samples were directly determined by gas chromatography and high-performance liquid chromatography, respectively. Models to predict each directly measured trait based on FT-MIR spectra were developed using partial least squares regression, with spectra from a random selection of half the cows used to train the models, and predictions for the remaining cows used as validation. Variance parameters for each trait and genetic correlations for each pair of measured/predicted traits were estimated from pedigree-based bivariate models using REML procedures. A genome-wide association study was undertaken using imputed whole-genome sequence, and quantitative trait loci (QTL) from directly measured traits were compared with QTL from the corresponding FT-MIR predicted traits. Cross-validation prediction accuracies based on partial least squares for individual and grouped fatty acids ranged from 0.18 to 0.65. Trait prediction accuracies in cross-validation for protein fractions were 0.53, 0.19, and 0.48 for α-casein, β-casein, and κ-casein, 0.31 for α-lactalbumin, 0.68 for β-lactoglobulin, and 0.36 for lactoferrin. Heritability estimates for directly measured traits ranged from 0.07 to 0.55 for fatty acids; and from 0.14 to 0.63 for individual milk proteins. For FT-MIR predicted traits, heritability estimates were mostly higher than for the corresponding measured traits, ranging from 0.14 to 0.46 for fatty acids, and from 0.30 to 0.70 for individual proteins. Genetic correlations between directly measured and FT-MIR predicted protein fractions were consistently above 0.75, with the exceptions of C18:0 and C18:3 cis-3, which had genetic correlations of 0.72 and 0.74, respectively. The GWAS identified trait QTL for fatty acids with likely candidates in the DGAT1, CCDC57, SCD, and GPAT4 genes. Notably, QTL for SCD were largely absent in the FT-MIR predicted traits, and QTL for GPAT4 were absent in directly measured traits. Similarly, for directly measured individual proteins, we identified QTL with likely candidates in the CSN1S1, CSN3, PAEP, and LTF genes, but the QTL for CSN3 and LTF were absent in the FT-MIR predicted traits. Our study indicates that genetic correlations between directly measured and FT-MIR predicted fatty acid and protein fractions are typically high, but that phenotypic variation in these traits may be underpinned by differing genetic architecture.  相似文献   

9.
The aim of this work was to analyze the possible relationships between milk production traits and prion protein genotypes in Spanish Churra sheep. For this purpose, 2 analyses were carried out. First, an association study was performed of the prion protein genotypes of 12,533 Churra ewes and their milk yield, protein percentage, fat percentage, and somatic cell score as phenotypes, followed by a quantitative trait loci screening on the chromosome where the prion protein gene was located in this population. The latter analysis was carried out using 8 genetic markers (7 microsatellites and the prion protein genotypes) spanning ovine chromosome 13 using a daughter design. Regarding genotype frequencies, the most frequent allele was ARQ (75.90%), which linked with a high susceptibility to scrapie, followed by the resistant haplotype, ARR (18.16%). The frequency of the most susceptible allele, VRQ, was around 1%. No evidence of association or linkage between prion protein genotypes and milk traits has been detected in Churra sheep. These results indicate that increasing the ARR frequency in Churra population will not have an adverse effect on selection for milk traits included in the breeding objectives. However, the low allele frequencies for ARR should be considered in the initial stages to prevent possible bottlenecks in future genetic progress.  相似文献   

10.
A major quantitative trait locus (QTL) for milk fat content and fatty acids in both milk and adipose tissue has been detected on Bos taurus autosome 19 (BTA19) in several cattle breeds. The objective of this study was to refine the location of the QTL on BTA19 for bovine milk fat composition using a denser set of markers. Opportunities for fine mapping were provided by imputation from 50,000 genotyped single nucleotide polymorphisms (SNP) toward a high-density SNP panel with up to 777,000 SNP. The QTL region was narrowed down to a linkage disequilibrium block formed by 22 SNP covering 85,007 bp, from 51,303,322 to 51,388,329 bp on BTA19. This linkage disequilibrium block contained 2 genes: coiled-coil domain containing 57 (CCDC57) and fatty acid synthase (FASN). The gene CCDC57 is minimally characterized and has not been associated with bovine milk fat previously, but is expressed in the mammary gland. The gene FASN has been associated with bovine milk fat and fat in adipose tissue before. This gene is a likely candidate for the QTL on BTA19 because of its involvement in de novo fat synthesis. Future studies using sequence data of both CCDC57 and FASN, and eventually functional studies, will have to be pursued to assign the causal variant(s).  相似文献   

11.
The seasonal variation in conjugated linoleic acid (CLA) and vaccenic acid (VA) concentrations in sheep dairy products and the extent of their transfer from milk fat to cheese and ricotta fat were investigated. Samples were collected from 2 sheep milk processing plants in North Sardinia (Italy) every 2 wk from March through June. Concentrations of fatty acids (FA) in fresh cheese and ricotta fat were primarily dependent on the fatty acid content of the unprocessed raw milk. The content of c9,t11-CLA averaged 1.73, 1.69, and 1.75 mg/100 mg of FA methyl esters (FAME), respectively, for milk, cheese, and ricotta, and differed significantly between cheese and ricotta. The content of VA averaged 3.40, 3.33, and 3.43 mg/100 mg of FAME, respectively for milk, cheese, and ricotta. The FA composition of dairy products was markedly affected by period of sampling: the mean c9,t11-CLA and VA concentration decreased from March (2.20 and 4.52 mg/100 mg of FAME) to June (1.14 and 1.76 mg/100 mg of FAME) in all dairy products. No differences in c9,t11-CLA and VA concentration of dairy products were observed between the 2 dairy companies obtaining milk from the same geographical origin. The seasonal changes in CLA and VA in milk fat were probably related to changes in pasture quality.  相似文献   

12.
The aim of this research was to determine the effect of adding extruded linseed cake to the dry diet of goats on the concentrations of conjugated linoleic acid (CLA) and vaccenic acid (VA) in milk fat. Thirty crossbreed dairy goats were divided into 3 groups. Their diet was supplemented with 0% (control group), 5% (low group), or 10% (high group) of extruded linseed cake (ELC), which supplied 0, 16, and 32 g/d of linseed fat, respectively. The milk fat percentage (overall mean 3.5%) and yield did not differ with the different diets, but fatty acid composition was affected by the ELC supplements. The inclusion of ELC in the diets did not influence the concentration of fatty acids from C6:0 to C12:0. The concentrations of C14:0 and C16:0 decreased as the quantity of ELC supplements increased. The concentrations (mg/100 mg of total fatty acid methyl esters) of VA (0.70, 1.23, and 1.39 in control, low, and high groups respectively) and cis-9,trans-11 CLA (0.63, 0.96, and 1.05 in control, low, and high groups, respectively) were increased by ELC supplements. The milk fat content of VA and cis- 9,trans-11 CLA were closely correlated (R2 = 0.82). Desaturation of VA in the mammary gland to produce cis-9,trans-11 CLA was higher in the control group than in the groups with ELC diets. Extruded linseed cake supplementation to lactating goats may enhance the nutritional profile of milk lipids.  相似文献   

13.
In this study, 2 procedures were used to analyze a data set from a whole-genome scan, one based on linkage analysis information and the other combing linkage disequilibrium and linkage analysis (LDLA), to determine the quantitative trait loci (QTL) influencing milk production traits in sheep. A total of 1,696 animals from 16 half-sib families were genotyped using the OvineSNP50 BeadChip (Illumina Inc., San Diego, CA) and analysis was performed using a daughter design. Moreover, the same data set has been previously investigated through a genome-wide association (GWA) analysis and a comparison of results from the 3 methods has been possible. The linkage analysis and LDLA methodologies yielded different results, although some significantly associated regions were common to both procedures. The linkage analysis detected 3 overlapping genome-wise significant QTL on sheep chromosome (OAR) 2 influencing milk yield, protein yield, and fat yield, whereas 34 genome-wise significant QTL regions were detected using the LDLA approach. The most significant QTL for protein and fat percentages was detected on OAR3, which was reported in a previous GWA analysis. Both the linkage analysis and LDLA identified many other chromosome-wise significant associations across different sheep autosomes. Additional analyses were performed on OAR2 and OAR3 to determine the possible causality of the most significant polymorphisms identified for these genetic effects by the previously reported GWA analysis. For OAR3, the analyses demonstrated additional genetic proof of the causality previously suggested by our group for a single nucleotide polymorphism located in the α-lactalbumin gene (LALBA). In summary, although the results shown here suggest that in commercial dairy populations, the LDLA method exhibits a higher efficiency to map QTL than the simple linkage analysis or linkage disequilibrium methods, we believe that comparing the 3 analysis methods is the best approach to obtain a global picture of all identifiable QTL segregating in the population at both family-based and population-based levels.  相似文献   

14.
A genome scan for chromosomal regions influencing body conformation traits was conducted for a population of Spanish Churra dairy sheep following a daughter design. A total of 739 ewes from 11 half-sib sire families were included in the study. The ewes were scored for the 5 linear traits used in the breeding scheme of the Churra breed to assess body conformation: stature, rear legs-rear view, foot angle, rump width, and general appearance. All the animals, including the 11 sires, were genotyped for 181 microsatellite markers evenly distributed across the 26 sheep autosomes. Using the yield deviations of the raw scores adjusted for fixed factors as phenotypic measurements, a quantitative trait loci (QTL) analysis was performed on the basis of a multi-marker regression method. Seven suggestive QTL were identified on chromosomes Ovis aries (OAR)2, OAR5, OAR16, OAR23, and OAR26, but none reached a genome-wise significance level. Putative QTL were identified for all of the traits analyzed, except for general appearance score. The suggestive QTL showing the highest test statistic influenced rear legs-rear view and was localized on OAR16, close to the growth hormone receptor coding gene, GHR. Some of the putative linkage associations reported here are consistent with previously reported QTL in cattle for similar traits. To the best of our knowledge, this study provides the first report of QTL for body conformation traits in dairy sheep; further studies will be needed to confirm and redefine the linkage associations reported herein. It is expected that future genome-wide association analyses of larger families will help identify genes underlying these putative genetic effects and provide useful markers for marker-assisted selection of such functional traits.  相似文献   

15.
16.
The effect of conjugated linoleic acid (CLA) supplements containing trans-10, cis-12 for reducing milk fat synthesis has been well described in dairy cows and sheep. Studies on lactating goats, however, remain inconclusive. Therefore, the current study investigated the efficacy of a lipid-encapsulated trans-10, cis-12 CLA supplement (LE-CLA) on milk production and milk fatty acid profile in dairy goats. Thirty multiparous Alpine lactating goats in late lactation were used in a 3 × 3 Latin square design (14-d treatment periods separated by 14-d intervals). Does were fed a total mixed ration of Bermuda grass hay, dehydrated alfalfa pellets, and concentrate. Does were randomly allocated to 3 treatments: A) unsupplemented (control), B) supplemented with 30 g/d of LE-CLA (low dose; CLA-1), and C) supplemented with 60 g/d of LE-CLA (high dose; CLA-2). Milk yield, dry matter intake, and milk protein content and yield were unaffected by treatment. Compared with the control, milk fat yield was reduced 8% by the CLA-1 treatment and 21% by the CLA-2 treatment, with milk fat content reduced 5 and 18% by the CLA-1 and CLA-2 treatments, respectively. The reduction in milk fat yield was due to decreases in both de novo fatty acid synthesis and uptake of preformed fatty acids. Milk fat content of trans-10, cis-12 CLA was 0.03, 0.09, and 0.19 g/100 g of fatty acids for the control, CLA-1, and CLA-2 treatments, respectively. The transfer efficiency of trans-10, cis-12 CLA from the 2 levels of CLA supplement into milk fat was not different between treatments and averaged 1.85%. In conclusion, trans-10, cis-12 CLA reduced milk fat synthesis in lactating dairy goats in a manner similar to that observed for lactating dairy cows and dairy sheep. Dose-response comparisons, however, suggest that the degree of reduction in milk fat synthesis is less in dairy goats compared with dairy cows and dairy sheep.  相似文献   

17.
The global production of sheep milk is growing, and the main industrial use of sheep milk is cheese making. The Spanish Churra sheep breed is one of the most important native dairy breeds in Spain. The present study aimed to estimate genetic parameters for a wide range of traits influencing the cheese-making ability of Churra sheep milk. Using a total of 1,049 Churra ewes, we studied the following cheese-making traits: 4 traits related to milk coagulation properties (rennet coagulation time, curd-firming time, and curd firmness at 30 and 60 min after addition of rennet), 2 traits related to cheese yield (individual laboratory cheese yield and individual laboratory dried curd yield), and 3 traits measuring curd firmness over time (maximum curd firmness, time to attain maximum curd firmness, and syneresis). In addition, a list of milk traits, including the native pH of the milk and several milk production and composition traits (milk yield; the fat, protein, and dried extract percentages; and the somatic cell count), were also analyzed for the studied animals. After discarding the noncoagulating samples (only 3.7%), data of 1,010 ewes were analyzed with multiple-trait animal models by using the restricted maximum likelihood method to estimate (co)variance components, heritabilities, and genetic correlations. In general, the heritability estimates were low to moderate, ranging from 0.08 (for the individual laboratory dried curd yield trait) to 0.42 (for the fat percentage trait). High genetic correlations were found within pairs of related traits (i.e., 0.93 between fat and dried extract percentages, ?0.93 between the log of the curd-firming time and curd firmness at 30 min, 0.70 between individual laboratory cheese yield and individual laboratory dried curd yield, and ?0.94 between time to attain maximum curd firmness and syneresis). Considering all the information provided here, we suggest that in addition to the current consideration of the protein percentage trait for improving cheese yield traits, the inclusion of the pH of milk as a measured trait in the Churra dairy breeding program would represent an efficient strategy for improving the cheese-making ability of milk from this breed.  相似文献   

18.
Spanish Churra sheep were studied in a daughter design for the presence on chromosome 6 of quantitative trait loci (QTL) influencing milk production traits. Eight half-sib families were genotyped for 11 microsatellites and marker-QTL effects analysed using yield deviations (YD) as quantitative measurements for the following traits: milk yield, protein yield, and protein percentage. QTL analysis was performed by interval mapping based on multimarker regression principles. Significance thresholds were estimated through a permutation test followed by a correction for multiple testing. The results suggest a region on ovine chromosome 6, close to the casein cluster, with an influence on milk traits and particularly on protein percentage. These results, the first ones reported for QTL affecting milk traits in sheep, are discussed in relation to data available for cattle, a closely related species.  相似文献   

19.
We present the results of a genome-wide scan to identify quantitative trait loci (QTL) that contribute to genetic variation in long-chain milk fatty acids. Milk-fat composition phenotypes were available on 1,905 Dutch Holstein-Friesian cows. A total of 849 cows and their 7 sires were genotyped for 1,341 single nucleotide polymorphisms across all Bos taurus autosomes (BTA). We detected significant QTL on BTA14, BTA15, and BTA16: for C18:1 cis-9, C18:1 cis-12, C18:2 cis-9,12, CLA cis-9,trans-11, C18:3 cis-9,12,15, the C18 index, the total index, total saturated fatty acids, total unsaturated fatty acids (UFA), and the ratio of saturated fatty acids:unsaturated fatty acids on BTA14; for C18:1 trans fatty acids on BTA15; and for the C18 and CLA indices on BTA16. The QTL explained 3 to 19% of the phenotypic variance. Suggestive QTL were found on 16 other chromosomes. The diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphism on BTA14, which is known to influence fatty acid composition, most likely explains the QTL that was detected on BTA14.  相似文献   

20.
The acetyl-CoA acyltransferase 2 (ACAA2) gene encodes an enzyme of the thiolase family that is involved in mitochondrial fatty acid elongation and degradation by catalyzing the last step of the respective β-oxidation pathway. The increased energy needs for gluconeogenesis and triglyceride synthesis during lactation are met primarily by increased fatty acid oxidation. Therefore, the ACAA2 enzyme plays an important role in the supply of energy and carbon substrates for lactation and may thus affect milk production traits. This study investigated the association of the ACAA2 gene with important sheep traits and the putative functional involvement of this gene in dairy traits. A single nucleotide substitution, a T to C transition located in the 3′ untranslated region of the ACAA2 gene, was used in mixed model association analysis with milk yield, milk protein yield and percentage, milk fat yield and percentage, and litter size at birth. The single nucleotide polymorphism was significantly associated with total lactation production and milk protein percentage, with respective additive effects of 6.81 ± 2.95 kg and ?0.05 ± 0.02%. Additionally, a significant dominance effect of 0.46 ± 0.21 kg was detected for milk fat yield. Homozygous TT and heterozygous CT animals exhibited higher milk yield compared with homozygous CC animals, whereas the latter exhibited increased milk protein percentage. Expression analysis from age-, lactation-, and parity-matched female sheep showed that mRNA expression of the ACAA2 gene from TT animals was 2.8- and 11.8-fold higher in liver and mammary gland, respectively. In addition, by developing an allelic expression imbalance assay, it was estimated that the T allele was expressed at an average of 18% more compared with the C allele in the udder of randomly selected ewes. We demonstrated for the first time that the variants in the 3′ untranslated region of the ovine ACAA2 gene are differentially expressed in homozygous ewes of each allele and exhibit allelic expression imbalance within heterozygotes in a tissue-specific manner, supporting the existence of cis-regulatory DNA variation in the ovine ACAA2 gene. This is the first study reporting differential allelic imbalance expression of a candidate gene associated with milk production traits in dairy sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号