首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present study was to estimate milk yield genetic parameters applying random regression models and parametric correlation functions combined with a variance function to model animal permanent environmental effects. A total of 152,145 test-day milk yields from 7,317 first lactations of Holstein cows belonging to herds located in the southeastern region of Brazil were analyzed. Test-day milk yields were divided into 44 weekly classes of days in milk. Contemporary groups were defined by herd-test-day comprising a total of 2,539 classes. The model included direct additive genetic, permanent environmental, and residual random effects. The following fixed effects were considered: contemporary group, age of cow at calving (linear and quadratic regressions), and the population average lactation curve modeled by fourth-order orthogonal Legendre polynomial. Additive genetic effects were modeled by random regression on 1/6/2010orthogonal Legendre polynomials of days in milk, whereas permanent environmental effects were estimated using a stationary or nonstationary parametric correlation function combined with a variance function of different orders. The structure of residual variances was modeled using a step function containing 6 variance classes. The genetic parameter estimates obtained with the model using a stationary correlation function associated with a variance function to model permanent environmental effects were similar to those obtained with models employing orthogonal Legendre polynomials for the same effect. A model using a sixth-order polynomial for additive effects and a stationary parametric correlation function associated with a seventh-order variance function to model permanent environmental effects would be sufficient for data fitting.  相似文献   

2.
The test-day yields of milk, fat and protein were analysed from 1433 first lactations of buffaloes of the Murrah breed, daughters of 113 sires from 12 herds in the state of S?o Paulo, Brazil, born between 1985 and 2007. For the test-day yields, 10 monthly classes of lactation days were considered. The contemporary groups were defined as the herd-year-month of the test day. Random additive genetic, permanent environmental and residual effects were included in the model. The fixed effects considered were the contemporary group, number of milkings (1 or 2 milkings), linear and quadratic effects of the covariable cow age at calving and the mean lactation curve of the population (modelled by third-order Legendre orthogonal polynomials). The random additive genetic and permanent environmental effects were estimated by means of regression on third- to sixth-order Legendre orthogonal polynomials. The residual variances were modelled with a homogenous structure and various heterogeneous classes. According to the likelihood-ratio test, the best model for milk and fat production was that with four residual variance classes, while a third-order Legendre polynomial was best for the additive genetic effect for milk and fat yield, a fourth-order polynomial was best for the permanent environmental effect for milk production and a fifth-order polynomial was best for fat production. For protein yield, the best model was that with three residual variance classes and third- and fourth-order Legendre polynomials were best for the additive genetic and permanent environmental effects, respectively. The heritability estimates for the characteristics analysed were moderate, varying from 0·16±0·05 to 0·29±0·05 for milk yield, 0·20±0·05 to 0·30±0·08 for fat yield and 0·18±0·06 to 0·27±0·08 for protein yield. The estimates of the genetic correlations between the tests varied from 0·18±0·120 to 0·99±0·002; from 0·44±0·080 to 0·99±0·004; and from 0·41±0·080 to 0·99±0·004, for milk, fat and protein production, respectively, indicating that whatever the selection criterion used, indirect genetic gains can be expected throughout the lactation curve.  相似文献   

3.
A random regression model with both random and fixed regressions fitted by Legendre polynomials of order 4 was compared with 3 alternative models fitting linear splines with 4, 5, or 6 knots. The effects common for all models were a herd-test-date effect, fixed regressions on days in milk (DIM) nested within region-age-season of calving class, and random regressions for additive genetic and permanent environmental effects. Data were test-day milk, fat and protein yields, and SCS recorded from 5 to 365 DIM during the first 3 lactations of Canadian Holstein cows. A random sample of 50 herds consisting of 96,756 test-day records was generated to estimate variance components within a Bayesian framework via Gibbs sampling. Two sets of genetic evaluations were subsequently carried out to investigate performance of the 4 models. Models were compared by graphical inspection of variance functions, goodness of fit, error of prediction of breeding values, and stability of estimated breeding values. Models with splines gave lower estimates of variances at extremes of lactations than the model with Legendre polynomials. Differences among models in goodness of fit measured by percentages of squared bias, correlations between predicted and observed records, and residual variances were small. The deviance information criterion favored the spline model with 6 knots. Smaller error of prediction and higher stability of estimated breeding values were achieved by using spline models with 5 and 6 knots compared with the model with Legendre polynomials. In general, the spline model with 6 knots had the best overall performance based upon the considered model comparison criteria.  相似文献   

4.
This study inferred genetic and permanent environmental variation of milk yield in Tropical Milking Criollo cattle and compared 5 random regression test-day models using Wilmink's function and Legendre polynomials. Data consisted of 15,377 test-day records from 467 Tropical Milking Criollo cows that calved between 1974 and 2006 in the tropical lowlands of the Gulf Coast of Mexico and in southern Nicaragua. Estimated heritabilities of test-day milk yields ranged from 0.18 to 0.45, and repeatabilities ranged from 0.35 to 0.68 for the period spanning from 6 to 400 d in milk. Genetic correlation between days in milk 10 and 400 was around 0.50 but greater than 0.90 for most pairs of test days. The model that used first-order Legendre polynomials for additive genetic effects and second-order Legendre polynomials for permanent environmental effects gave the smallest residual variance and was also favored by the Akaike information criterion and likelihood ratio tests.  相似文献   

5.
In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21–0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal.  相似文献   

6.
The dataset used in this analysis contained a total of 341,736 test-day observations of somatic cell scores from 77,110 primiparous daughters of 1965 Norwegian Cattle sires. Initial analyses, using simple random regression models without genetic effects, indicated that use of homogeneous residual variance was appropriate. Further analyses were carried out by use of a repeatability model and 12 random regression sire models. Legendre polynomials of varying order were used to model both permanent environmental and sire effects, as did the Wilmink function, the Lidauer-M?ntysaari function, and the Ali-Schaeffer function. For all these models, heritability estimates were lowest at the beginning (0.05 to 0.07) and higher at the end (0.09 to 0.12) of lactation. Genetic correlations between somatic cell scores early and late in lactation were moderate to high (0.38 to 0.71), whereas genetic correlations for adjacent DIM were near unity. Models were compared based on likelihood ratio tests, Bayesian information criterion, Akaike information criterion, residual variance, and predictive ability. Based on prediction of randomly excluded observations, models with 4 coefficients for permanent environmental effect were preferred over simpler models. More highly parameterized models did not substantially increase predictive ability. Evaluation of the different model selection criteria indicated that a reduced order of fit for sire effects was desireable. Models with zeroth- or first-order of fit for sire effects and higher order of fit for permanent environmental effects probably underestimated sire variance. The chosen model had Legendre polynomials with 3 coefficients for sire, and 4 coefficients for permanent environmental effects. For this model, trajectories of sire variance and heritability were similar assuming either homogeneous or heterogeneous residual variance structure.  相似文献   

7.
Test-day variances for permanent environmental effects within and across parities were estimated along with lactation stage, age, and pregnancy effects for use with a test-day model. Data were test-day records for calvings since 1990 for Jerseys and for Holsteins from California, Pennsylvania, Texas, and Wisconsin. Single-trait repeatability models were fitted for milk, fat, and protein test-day yields. Method R and a preconditioned conjugate gradient equation solver were used for variance component estimation because of large data sets. Test-day yields were adjusted for environmental effects of calving age, calving season, and milking frequency and for estimated breeding value (EBV) expressed on a daily basis. To assess the effect of adjustments, test-day yields also were analyzed without adjustment. For adjusted data, permanent environmental variances across parities relative to phenotypic variance ranged from 8.3 to 15.2% for milk, 4.4 to 8.3% for fat, and 6.9 to 11.0% for protein across regions and breeds; relative permanent environmental variances within parity ranged from 31.4 to 34.7% for milk, 18.2 to 22.3% for fat, and 28.3 to 29.1% for protein and were similar across regions and breeds. Adjustment for EBV reduced permanent environmental variance across parities and removed cow genetic variance. Relative permanent environmental variances within parity from unadjusted test-day yields were nearly identical to those from adjusted test-day yields. For unadjusted test-day yields, heritabilities ranged from 0.19 to 0.30 for milk, 0.13 to 0.15 for fat, and 0.17 to 0.23 for protein. Adjustments for lactation stage, age at milking, previous days open, and days pregnant were estimated from adjusted test-day yields using the same single-trait repeatability models and variance ratios estimated for permanent environment within and across parities. Those adjustments can be applied additively to test-day yields before evaluation analysis. Variance components and solutions for the various effects can be used to calculate test-day deviations in an analysis within herd that contributes to an analysis across herds.  相似文献   

8.
First-lactation test-day milk, fat, and protein yields from New York, Wisconsin, and California herds from 1990 through 2000 were adjusted additively for age and lactation stage. A random regression model with third-order Legendre polynomials for permanent environmental and genetic effects was used. The model included a random effect with the same polynomial regressions for 2 yr of calvings within herd (herd-time effect) to provide herd-specific lactation curves that can change every 2 yr. (Co)variance components were estimated using expectation-maximization REML simultaneously with phenotypic variances that were modeled using a structural variance model. Maximum heritability for test-day milk yield was estimated to be approximately 20% around 200 to 250 d in milk; heritabilities were slightly lower for test-day fat and protein yields. Herd-time effects explained 12 to 20% of phenotypic variance and had the greatest impact at start of lactation. Variances of test-day yields increased with time, subclass size, and milking frequency. Test month had limited influence on variance. Variance increased for cows in herds with low and high milk yields and for early and late lactation stages. Repeatabilities of variances observed for a given class of herd, test-day, and milking frequency were 14 to 17% across nested variance subclasses based on lactation stage.  相似文献   

9.
Animals that are robust to environmental changes are desirable in the current dairy industry. Genetic differences in micro-environmental sensitivity can be studied through heterogeneity of residual variance between animals. However, residual variance between animals is usually assumed to be homogeneous in traditional genetic evaluations. The aim of this study was to investigate genetic heterogeneity of residual variance by estimating variance components in residual variance for milk yield, somatic cell score, contents in milk (g/dL) of 2 groups of milk fatty acids (i.e., saturated and unsaturated fatty acids), and the content in milk of one individual fatty acid (i.e., oleic acid, C18:1 cis-9), for first-parity Holstein cows in the Walloon Region of Belgium. A total of 146,027 test-day records from 26,887 cows in 747 herds were available. All cows had at least 3 records and a known sire. These sires had at least 10 cows with records and each herd × test-day had at least 5 cows. The 5 traits were analyzed separately based on fixed lactation curve and random regression test-day models for the mean. Estimation of variance components was performed by running iteratively expectation maximization-REML algorithm by the implementation of double hierarchical generalized linear models. Based on fixed lactation curve test-day mean models, heritability for residual variances ranged between 1.01 × 10−3 and 4.17 × 10−3 for all traits. The genetic standard deviation in residual variance (i.e., approximately the genetic coefficient of variation of residual variance) ranged between 0.12 and 0.17. Therefore, some genetic variance in micro-environmental sensitivity existed in the Walloon Holstein dairy cattle for the 5 studied traits. The standard deviations due to herd × test-day and permanent environment in residual variance ranged between 0.36 and 0.45 for herd × test-day effect and between 0.55 and 0.97 for permanent environmental effect. Therefore, nongenetic effects also contributed substantially to micro-environmental sensitivity. Addition of random regressions to the mean model did not reduce heterogeneity in residual variance and that genetic heterogeneity of residual variance was not simply an effect of an incomplete mean model.  相似文献   

10.
Multiple-trait random regression animal models with simultaneous and recursive links between phenotypes for milk yield and somatic cell score (SCS) on the same test day were fitted to Canadian Holstein data. All models included fixed herd test-day effects and fixed regressions within region-age at calving-season of calving classes, and animal additive genetic and permanent environmental regressions with random coefficients. Regressions were Legendre polynomials of order 4 on a scale from 5 to 305 d in milk (DIM). Bayesian methods via Gibbs sampling were used for the estimation of model parameters. Heterogeneity of structural coefficients was modeled across (the first 3 lactations) and within (4 DIM intervals) lactation. Model comparisons in terms of Bayes factors indicated the superiority of simultaneous models over the standard multiple-trait model and recursive parameterizations. A moderate heterogeneous (both across- and within-lactation) negative effect of SCS on milk yield (from −0.36 for 116 to 265 DIM in lactation 1 to −0.81 for 5 to 45 DIM in lactation 3) and a smaller positive reciprocal effect of SCS on milk yield (from 0.007 for 5 to 45 DIM in lactation 2 to 0.023 for 46 to 115 DIM in lactation 3) were estimated in the most plausible specification. No noticeable differences among models were detected for genetic and environmental variances and genetic parameters for the first 2 regression coefficients. The curves of genetic and permanent environmental variances, heritabilities, and genetic and phenotypic correlations between milk yield and SCS on a daily basis were different for different models. Rankings of bulls and cows for 305-d milk yield, average daily SCS, and milk lactation persistency remained the same among models. No apparent benefits are expected from fitting causal phenotypic relationships between milk yield and SCS on the same test day in the random regression test-day model for genetic evaluation purposes.  相似文献   

11.
The objective of this study was to compare test-day (TD) models with autoregressive covariance structures for the estimation of genetic and environmental components of variance for milk, fat and protein yields, and somatic cell score (SCS) in Holstein cows. Four models were compared: model I (CS model) was a simple TD repeatability animal model with compound symmetry covariance structure for environmental effects, model II (ARpe model) and model III (ARe model) had first-order autoregressive covariance structures for TD permanent or residual environmental effects, respectively, and model IV (305-d model) was a simple animal model using 305-d records. Data were 106,472 first-lactation TD records of 12,071 Holstein cows calving from 1996 through 2001. Likelihood ratio tests indicated that ARpe and ARe models fit the data significantly better than the CS model. The ARe model resulted in slightly smaller estimates of genetic variance and heritability than did the CS model. Estimates of residual variance were always smaller with the CS model than with the ARe model with the autoregressive covariance structure among TD residual effects. Estimates of heritability with different TD models were in the range of 0.06 to 0.11. The 305-d model resulted in estimates of heritability in the range of 0.11 to 0.36. The autoregressive covariance structure among TD residual effects may help to prevent bias in heritability estimates for milk, fat and protein yields, and SCS.  相似文献   

12.
Several functions were used to model the fixed part of the lactation curve and genetic parameters of milk test-day records to estimate using French Holstein data. Parametric curves (Legendre polynomials, Ali-Schaeffer curve, Wilmink curve), fixed classes curves (5-d classes), and regression splines were tested. The latter were appealing because they adjusted the data well, were relatively insensitive to outliers, were flexible, and resulted in smooth curves without requiring the estimation of a large number of parameters. Genetic parameters were estimated with an Average Information REML algorithm where the average information matrix and the first derivatives of the likelihood functions were pooled over 10 samples. This approach made it possible to handle larger data sets. The residual variance was modeled as a quadratic function of days in milk. Quartic Legendre polynomials were used to estimate (co)variances of random effects. The estimates were within the range of most other studies. The greatest genetic variance was in the middle of the lactation while residual and permanent environmental variances mostly decreased during the lactation. The resulting heritability ranged from 0.15 to 0.40. The genetic correlation between the extreme parts of the lactation was 0.35 but genetic correlations were higher than 0.90 for a large part of the lactation. The use of the pooling approach resulted in smaller standard errors for the genetic parameters when compared to those obtained with a single sample.  相似文献   

13.
Single- and two-trait random regression models were applied to estimate variance components of test-day records of milk, fat, and protein yields in the first and second lactation of Polish Black and White cattle. The model included fixed herd test-day effect, three covariates to describe lactation curve nested within age-season classes, and random regressions for additive genetic and permanent environmental effects. In two-parity models, each parity was treated as a separate trait. For milk and the two-parity model, heritabilities were in the range of 0.14 to 0.19 throughout first lactation and 0.10 to 0.16 throughout second lactation. For fat, heritabilities were within 0.11 to 0.16 and 0.11 to 0.22 throughout first and second lactations, respectively. For protein in the two-parity model, heritabilities were within 0.10 to 0.15 throughout most of first lactation and within 0.06 to 0.15 throughout the most of second lactation. For milk, genetic correlations between the first and second parities were 0.6 at the beginning of the lactation, rising to 0.9 in the middle, and 0.8 at the end of the lactation. For fat, the corresponding correlations were 0.6, 0.8, and 0.7, respectively, and for protein were 0.6, 0.8, and 0.8, respectively. Heritability estimates for all traits were flatter for the two-parity model. Relatively smooth genetic and permanent environmental variances with the two-parity model indicated that large swings of heritabilities could be artifacts of single-trait random regression models. High correlations between most of test day records across lactations suggested that a repeatability model could be considered as an alternative to a multiple-trait model to analyze multiple parities.  相似文献   

14.
Genetic effects of heat stress on milk yield of Thai Holstein crossbreds   总被引:1,自引:0,他引:1  
The threshold for heat stress on milk yield of Holstein crossbreds under climatic conditions in Thailand was investigated, and genetic effects of heat stress on milk yield were estimated. Data included 400,738 test-day milk yield records for the first 3 parities from 25,609 Thai crossbred Holsteins between 1990 and 2008. Mean test-day milk yield ranged from 12.6 kg for cows with <87.5% Holstein genetics to 14.4 kg for cows with ≥93.7% Holstein genetics. Daily temperature and humidity data from 26 provincial weather stations were used to calculate a temperature-humidity index (THI). Test-day milk yield varied little with THI for first parity except above a THI of 82 for cows with ≥93.7% Holstein genetics. For third parity, test-day milk yield started to decline after a THI of 74 for cows with ≥87.5% Holstein genetics and declined more rapidly after a THI of 82. A repeatability test-day model with parities as correlated traits was used to estimate heat stress parameters; fixed effects included herd-test month-test year and breed groups, days in milk, calving age, and parity; random effects included 2 additive genetic effects, regular and heat stress, and 2 permanent environment, regular and heat stress. The threshold for effect of heat stress on test-day milk yield was set to a THI of 80. All variance component estimates increased with parity; the largest increases were found for effects associated with heat stress. In particular, genetic variance associated with heat stress quadrupled from first to third parity, whereas permanent environmental variance only doubled. However, permanent environmental variance for heat stress was at least 10 times larger than genetic variance. Genetic correlations among parities for additive effects without heat stress considered ranged from 0.88 to 0.96. Genetic correlations among parities for additive effects of heat stress ranged from 0.08 to 0.22, and genetic correlations between effects regular and heat stress effects ranged from −0.21 to −0.33 for individual parities. Effect of heat stress on Thai Holstein crossbreds increased greatly with parity and was especially large after a THI of 80 for cows with a high percentage of Holstein genetics (≥93.7%). Individual sensitivity to heat stress was more environmental than genetic for Thai Holstein crossbreds.  相似文献   

15.
The validity of national genetic evaluations depends on the quality of input data, on the model of analysis, and on the correctness of genetic evaluation software. A general strategy was developed to validate national breeding value prediction software: performances from a real data file were replaced with simulated ones, created from simulated fixed and random effects and residuals in such a way that BLUP estimates from the evaluation software must be equal to the simulated effects. This approach was implemented for a multiple-trait model and a random regression test-day model. An example was presented on test-day observations analyzed with a random regression animal model including a lactation curve described as a sum of fixed polynomial regression and fixed spline regression on days in milk, and with genetic and permanent environmental effects modeled by using Legendre polynomials of order 2. Residuals had heterogeneous variances, and phantom parent groups were included. This method can be easily extended to other linear models. The comparison of genetic evaluation results with simulated true effects is used to demonstrate the great efficiency and usefulness of the proposed method.  相似文献   

16.
Data included 585,119 test-day records for milk, fat, and protein yields from the first, second, and third parities of 38,608 Holsteins in Georgia. Daily temperature-humidity indexes (THI) were available from public weather stations. Models included a repeatability test-day model with a random regression on a function of THI and a test-day random regression model using linear splines with knots at 5, 50, 200, and 305 d in milk and a function of THI. Random effects were additive genetic and permanent environmental in the repeatability model and additive genetic, permanent environmental, and herd year in the random regression model. Additionally, models included fixed effects for herd test day, calving age, milking frequency, and lactation stage. Phenotypic variance increased by 50 to 60% from the first to second parity for all yield traits with the repeatability model and by 12 to 15% from the second to third parity. General additive genetic variance increased by 25 to 35% from the first to second parity for all yield traits but decreased slightly from the second to third parity for milk and protein yields. Genetic variance for heat tolerance doubled from the first to second parity and increased by 20 to 100% from the second to third parity. Genetic correlations among general additive effects were lowest between the first and second parities (0.84 to 0.88) and were highest between the second and third parities (0.96 to 0.98). Genetic correlations among parities for the effect of heat tolerance ranged from 0.56 to 0.79. Genetic correlations between general and heat-tolerance effects across parities and yield traits ranged from −0.30 to −0.50. With the random regression model, genetic variance for heat tolerance for milk yield was approximately one-half that of the repeatability model. For milk yield, the most negative genetic correlation (approximately −0.45) between general and heat-tolerance effects was between 50 and 200 d in milk for the first parity and between 200 and 305 d in milk for the second and third parities. The genetic variance of heat tolerance increased substantially from the first to third parity. Genetic estimates of heat tolerance may be inflated with the repeatability model because of timing of lactations to avoid peak yield during hot seasons.  相似文献   

17.
In New Zealand, a large proportion of cows are currently crossbreds, mostly Holstein-Friesians (HF) × Jersey (JE). The genetic evaluation system for milk yields is considering the same additive genetic effects for all breeds. The objective was to model different additive effects according to parental breeds to obtain first estimates of correlations among breed-specific effects and to study the usefulness of this type of random regression test-day model. Estimates of (co)variance components for purebred HF and JE cattle in purebred herds were computed by using a single-breed model. This analysis showed differences between the 2 breeds, with a greater variability in the HF breed. (Co)variance components for purebred HF and JE and crossbred HF × JE cattle were then estimated by using a complete multibreed model in which computations of complete across-breed (co)variances were simplified by correlating only eigenvectors for HF and JE random regressions of the same order as obtained from the single-breed analysis. Parameter estimates differed more strongly than expected between the single-breed and multibreed analyses, especially for JE. This could be due to differences between animals and management in purebred and nonpurebred herds. In addition, the model used only partially accounted for heterosis. The multibreed analysis showed additive genetic differences between the HF and JE breeds, expressed as genetic correlations of additive effects in both breeds, especially in linear and quadratic Legendre polynomials (respectively, 0.807 and 0.604). The differences were small for overall milk production (0.926). Results showed that permanent environmental lactation curves were highly correlated across breeds; however, intraherd lactation curves were also affected by the breed-environment interaction. This result may indicate the existence of breed-specific competition effects that vary through the different lactation stages. In conclusion, a multibreed model similar to the one presented could optimally use the environmental and genetic parameters and provide breed-dependent additive breeding values. This model could also be a useful tool to evaluate crossbred dairy cattle populations like those in New Zealand. However, a routine evaluation would still require the development of an improved methodology. It would also be computationally very challenging because of the simultaneous presence of a large number of breeds.  相似文献   

18.
Pedigree information and test-day records for the first 3 parities of Milking Shorthorn dairy cattle from 5 countries were analyzed. After editing, the data included 1,018,528 test-day records from 68,653 cows. A multiple-lactation random regression test-day model with Legendre polynomials of order 4 and a Bayesian method were used to estimate variance components for both single and multiple-countries. Fixed effects included herd-test-day class and regressions on DIM within age at calving-parity-season of calving. Random effects included animal genetic, permanent environmental, and residual effects. Average daily heritabilities from single country analyses ranged from 0.33 to 0.47 for milk yield and from 0.37 to 0.45 for protein yield across lactations and countries. Common sires (66) and their daughters were identified for creating a connected data set for simultaneous (co)variance component estimation of milk yield across all 5 countries. Between-country genetic correlations were low, with values from 0.08 to 0.46 and standard deviations from 0.08 to 0.12. Estimated breeding values for milk were generated for each animal using the same test-day animal model. Correlations among country estimated breeding values were higher than genetic correlations. Top 100 bull lists were generated on the scale of each country, and genetic progress was assessed. Future evaluation with increased genetic ties among countries may facilitate international comparison of Milking Shorthorns.  相似文献   

19.
The Canadian Test-Day Model includes test-day (TD) records from 5 to 305 d in milk (DIM). Because 60% of Canadian Holstein cows have at least one lactation longer than 305 d, a significant number of TD records beyond 305 DIM could be included in the genetic evaluation. The aim of this study was to investigate whether TD records beyond 305 DIM could be useful for estimation of 305-d estimated breeding value (EBV) for milk, fat, and protein yields and somatic cell score. Data were 48,638,184 TD milk, fat, and protein yields and somatic cell scores from the first 3 lactations of 2,826,456 Canadian Holstein cows. All production traits were preadjusted for the effect of pregnancy. Subsets of data were created for variance-component estimation by random sampling of 50 herds. Variance components were estimated using Gibbs sampling. Full data sets were used for estimation of breeding values. Three multiple-trait, multiple-lactation random regression models with TD records up to 305 DIM (M305), 335 DIM (M335), and 365 DIM (M365) were fitted. Two additional models (M305a and M305b) used TD records up to 305 DIM and variance components previously estimated by M335 and M365, respectively. The effects common to all models were fixed effects of herd × test-date and DIM class, fixed regression on DIM nested within region × age × season class, and random regressions for additive genetic and permanent environmental effects. Legendre polynomials of order 6 and 4 were fitted for fixed and random regressions, respectively. Rapid increase of additive genetic and permanent environmental variances at extremes of lactations was observed with all 3 models. The increase of additive genetic and permanent environmental variances was at earlier DIM with M305, resulting in greater variances at 305 DIM with M305 than with M335 and M365. Model M305 had the best ability to predict TD yields from 5 through 305 DIM and less error of prediction of 305-d EBV than M335 and M365. Model M335 had smaller change of 305-d EBV of bulls over the period of 7 yr than did M305 and M365. Model M305a had the least error of prediction and change of 305-d EBV from all models. Therefore, the use of TD records of Holstein cows from 5 through 305 DIM and variance components estimated using records up to 335 DIM is recommended for the Canadian Test-Day Model.  相似文献   

20.
Test-day first-lactation milk yields from Holstein cows were analyzed with a set of random regression models based on Legendre polynomials of varying order on additive genetic and permanent environmental effects. Homogeneity and heterogeneity of residual variance, assuming three and 30 arbitrary measurement error classes of different length were considered. Unknown parameters were estimated within a Bayesian framework. Bayes factors and a checking function for the cross-validation predictive densities of the data were the tools chosen for selecting among competing models. Residual variances obtained from 30 arbitrary intervals were nearly constant between d 70 and 300 and tended to increase towards the extremes of the lactation, especially at the onset. In early lactation, the temporary measurement errors were found to be larger and highly variable. A high order of the regression submodels employed for modeling the permanent environmental deviations tended to strongly correct the heterogeneity of the residual variance. Accordingly, the assumption of homogeneity of residual variance was the most plausible specification under both comparison criteria when the number of random regression coefficients was set to five. Otherwise, the heterogeneity assumption, using three or 30 error classes, was better supported, depending on the criterion and on the order of the submodel fitted for the permanent environmental effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号