首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 897 毫秒
1.
The objective of this experiment was to investigate the effect of level of dietary concentrate on rumen fermentation, digestibility, and N losses in lactating dairy cows. The experiment was a replicated 3 × 3 Latin square design with 6 cows and 16-d adaptation periods. Ruminal contents were exchanged between cows at the beginning of each adaptation period. Data for 2 of the diets tested in this experiment are presented here. The diets contained (dry matter basis): 52% (LowC; control) and 72% (HighC) concentrate feeds. Crude protein contents of the diets were 16.5 and 16.4%, respectively. The HighC diet decreased ruminal pH and ammonia concentration and increased propionate concentration compared with LowC. Acetate:propionate ratio was greater for LowC than for HighC. Rumen methane production and microbial protein synthesis were unaffected by diet. Dry matter intake was similar among diets, but milk yield was increased by HighC compared with LowC (36.0 and 33.2 kg/d, respectively). Milk fat percentage and yield and total-tract apparent NDF digestibility were decreased by HighC compared with LowC. More ruminal ammonia N was transferred into milk protein with HighC than with LowC. Urinary N excretion, plasma urea N, and milk urea N concentration were not affected by diet. The ammonia emitting potential of manure was similar between LowC and HighC diets. Increased concentrate proportion in the diet of dairy cows resulted in reduced ruminal ammonia concentration and enhanced ammonia utilization for milk protein synthesis. These effects, however, did not result in reduced urinary N losses and only marginally improved milk N efficiency. Increasing dietary concentrate was not a successful strategy to mitigate enteric methane production and ammonia emissions from manure.  相似文献   

2.
Three experiments (Exp.) were conducted to study the effects of dietary addition of an essential oil product (EO) based on eugenol and cinnamaldehyde (0, control, or 525 mg/d of Xtract 6965; Pancosma SA, Geneva, Switzerland) on ruminal fermentation, total-tract digestibility, manure gas emissions, N losses, and dairy cow performance. In Exp. 1 and 3, the EO supplement was added to the vitamin-mineral premix. In Exp. 2, EO was top-dressed. Experiments 1 and 2 were crossover designs with 20 multiparous Holstein cows each (including 4 and 8 ruminally cannulated cows, respectively) and consisted of two 28-d periods. Intake of dry matter did not differ between treatments. Most ruminal fermentation parameters were unaffected by EO. Concentrations of ammonia (Exp. 1), isobutyrate (Exp. 1 and 2), and isovalerate (Exp. 1) were increased by EO compared with the control. Apparent total-tract digestibility of nutrients was similar between treatments, except total-tract digestibility of neutral-detergent fiber, which was increased or tended to be increased by EO in Exp. 1 and 2. Manure emissions of ammonia and methane were unaffected by EO. Blood plasma and milk urea-N concentrations and urinary N losses were increased by EO compared with the control in Exp. 1, but not in Exp. 2. Average milk yield, 3.5% fat-corrected milk yield, and milk fat, protein, and lactose concentrations were unaffected by treatment. Urinary excretion of purine derivatives, a marker for microbial protein production in the rumen, was greater in cows receiving the EO diet in Exp. 1, but not in Exp. 2. In Exp. 3, 120 Holstein cows were grouped in pens of 20 cows/pen in a 12-wk experiment to study production effects of EO. Dry matter intake, milk yield (a trend for a slight decrease with EO), milk components, milk urea N, and feed efficiency were similar between treatments. Results from these studies indicate that supplementing dairy cows with 525 mg/d of Xtract 6965 had moderate effects on ruminal fermentation, but consistently increased ruminal isobutyrate concentration and tended to increase total-tract digestibility of neutral-detergent fiber. Under the conditions of these experiments, Xtract 6965 fed at 525 mg/d did not affect milk production or composition.  相似文献   

3.
A lactating cow trial was conducted to study the effects of dietary addition of oregano leaf material (Origanum vulgare L.; OV; 0, control vs. 500 g/d) on ruminal fermentation, methane production, total tract digestibility, manure gas emissions, N metabolism, organoleptic characteristics of milk, and dairy cow performance. Eight primiparous and multiparous Holstein cows (6 of which were ruminally cannulated) were used in a crossover design trial with two 21-d periods. Cows were fed once daily. The OV material was top-dressed and mixed with a portion of the total mixed ration. Cows averaged 80 ± 12.5 d in milk at the beginning of the trial. Rumen pH, concentration of total and individual volatile fatty acids, microbial protein outflow, and microbial profiles were not affected by treatment. Ruminal ammonia-N concentration was increased by OV compared with the control (5.3 vs. 4.3 mM). Rumen methane production, which was measured only within 8 h after feeding, was decreased by OV. Intake of dry matter (average of 26.6 ± 0.83 kg/d) and apparent total tract digestibly of nutrients did not differ between treatments. Average milk yield, milk protein, lactose, and milk urea nitrogen concentrations were unaffected by treatment. Milk fat content was increased and 3.5% fat-corrected milk yield tended to be increased by OV, compared with the control (3.29 vs. 3.12% and 42.4 vs. 41.0 kg/d, respectively). Fat-corrected (3.5%) milk feed efficiency and milk net energy for lactation (NEL) efficiency (milk NEL ÷ NEL intake) were increased by OV compared with the control (1.64 vs. 1.54 kg/kg and 68.0 vs. 64.4%, respectively). Milk sensory parameters were not affected by treatment. Urinary and fecal N losses, and manure ammonia and methane emissions were unaffected by treatment. Under the current experimental conditions, supplementation of dairy cow diets with 500 g/d of OV increased milk fat concentration, feed and milk NEL efficiencies, and tended to increase 3.5% fat-corrected milk yield. The sizable decrease in rumen methane production with the OV supplementation occurred within 8 h after feeding and has to be interpreted with caution due to the large within- and between-animal variability in methane emission estimates. The OV was introduced into the rumen as a pulse dose at the time of feeding, thus most likely having larger effect on methane production during the period when methane data were collected. It is unlikely that methane production will be affected to the same extent throughout the entire feeding cycle.  相似文献   

4.
A crossover design trial with 4 ruminally and duodenally cannulated lactating dairy cows was conducted to study the effect of sodium laurate on ruminal fermentation, nutrient digestibility, and milk yield and composition. The daily dose of sodium laurate (0, control or 240 g/cow, LA) was divided in 2 equal portions and introduced directly into the rumen through the cannula before feedings. Ruminal samples (29 in 114 h) were analyzed for fermentation variables and protozoal counts. Sodium laurate had no effect on ruminal pH and total and individual volatile fatty acids concentrations. Ruminal ammonia concentration, ammonia N pool size, and the irreversible loss of ammonia N were unaffected by treatment. Compared to control, protozoal counts were reduced by 91% by LA. Carboxymethylcellulase and xylanase activities of ruminal fluid were decreased (by 40 and 36%, respectively), and amylase activity was not affected by LA compared with control. Flow of microbial N to the duodenum was reduced by LA. Dry matter intake and apparent total tract digestibility of dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber were not different between the 2 treatments. Milk yield, fat-corrected milk yield, milk fat and protein concentrations and yields, and milk urea N content were not affected by treatment. Sodium laurate did not affect transfer of ruminal ammonia-15N into bacterial or milk protein. In conclusion, LA at approximately 0.3% of the rumen weight reduced ruminal protozoal population and had a negative effect on fibrolytic activities of ruminal fluid and microbial protein flow to the intestine. Treatment had no other significant effects on ruminal fermentation, total tract digestibility, or transfer of ruminal ammonia-15N into milk protein.  相似文献   

5.
Six lactating Holstein cows fitted with rumen and T-type duodenal cannulas were used in a crossover design to examine effects of yeast culture supplement on production parameters, rumen fermentation, and flow of N to the duodenum. Treatments were control and control plus 10 g/d of yeast culture. Dry matter intake was greater, and milk production tended to be higher, for cows supplemented with yeast culture, but milk composition was not affected. Rumen pH was not affected by yeast culture, but peak lactic acid concentration decreased from 1.93 to 1.73 mM. Rumen fluid acetate:propionate ratio, dilution rate (percentage per hour), and ammonia N concentration (milligrams per deciliter) were 2.28, .12, and 10.7 and 2.04, .13, and 9.6 for control cows and for cows supplemented with yeast culture, respectively. Although numbers of fiber-digesting bacteria were not affected by yeast culture, DM disappearance of wheat straw tended to be higher at 12 and 24 h, and CP and ADF digestibilities were greater. Duodenal NAN flow tended to be higher in cows supplemented with yeast culture because of higher bacterial N flow. Duodenal AA profile and flow of Met were significantly affected by yeast culture supplementation. The results suggest that yeast culture may alter the AA profile of bacterial protein.  相似文献   

6.
This experiment investigated the effect of dietary crude protein (CP) and ruminally degraded protein (RDP) levels on rumen fermentation, digestibility, ammonia emission from manure, and performance of lactating dairy cows. The experiment was a replicated 3 × 3 Latin square design with 6 cows. Three diets varying in CP concentration were tested (CP, % of dry matter): 15.4 (high CP, control), 13.4 (medium CP), and 12.9% (low CP). These diets provided metabolizable protein balances of 323, −44, and 40 g/d and RDP balances of 162, −326, and −636 g/d (high, medium, and low, respectively). Both the medium and low CP diets decreased ruminal pH compared with high CP, most likely because of the higher nonfiber carbohydrate concentration in the former diets. Ruminal ammonia pool size (rumen ammonia N was labeled with 15N) and the concentration of total free amino acids were greater for the high CP diet than for the RDP-deficient diets. Apparent total-tract nutrient digestibilities were not affected by treatment. Both the medium and low CP diets resulted in lower absolute and relative excretion of urinary N compared with the high CP diet, as a proportion of N intake. Excretion of fecal N and milk yield and composition were not affected by diet. Milk N efficiency (milk N ÷ N intake) and the cumulative secretion of ammonia-15N in milk protein were greater for the RDP-deficient diets, and milk urea N concentration was greater for the high CP diet. Both medium and low CP diets decreased the irreversible loss of ruminal ammonia N compared with the high CP diet. The rate and cumulative ammonia emissions from manure were lower for the medium and low CP diets compared with the high CP diet. Overall, this study demonstrated that dairy diets with reduced CP and RDP concentrations will produce manure with lower ammonia-emitting potential without affecting cow performance, if metabolizable protein requirements are met.  相似文献   

7.
Phenolic compounds and essential oils with high content of phenolic compounds have been reported to exert antimicrobial activities in vitro. The objective of this study was to determine the effects of dairy cow diet supplementation with thyme oil and its main component thymol on intake and total-tract apparent digestibility of nutrients, rumen fermentation characteristics, ruminal protozoa, nitrogen excretion, and milk production. For this aim, we used 8 multiparous, ruminally cannulated Holstein cows in a replicated 4 × 4 Latin square design (28 d periods), balanced for residual effects. Cows were fed 1 of the 4 following experimental treatments: total mixed ration (TMR) with no additive (control); TMR + monensin [24 mg/kg of dry matter (DM)]; TMR + thyme oil (50 mg/kg of DM); and TMR + thymol (50 mg/kg of DM). Compared with the control diet, feeding thyme oil or thymol had no effect on DM intake, nutrient total-tract apparent digestibility, total N excretion, ruminal pH, ammonia concentration, total volatile fatty acid (VFA) concentration, or acetate:propionate ratio. Ruminal protozoa density was not modified by thyme oil, but decreased with thymol supplementation. Supplementation with thyme oil or thymol did not affect milk production, milk composition, or efficiency of milk production. Neither thyme oil nor thymol affected efficiency of dietary N use for milk N secretion (N intake/milk N). Supplementation with monensin tended to decrease DM intake (–1.2 kg/d) and milk fat yield. Total-tract apparent digestibility of nutrients did not differ between cows fed monensin and cows fed the control diet. Total VFA concentration was not changed by monensin supplementation compared with control, but adding monensin shifted the VFA profile toward more propionate and less acetate, resulting in a decrease of acetate:propionate ratio. Protozoa density and ammonia concentration were lower in the ruminal content of cows fed monensin compared with that of cows fed the control diet. Total N excretion was not affected by monensin supplementation. Likewise, efficiency of use of dietary N for milk N secretion was unchanged in cows fed monensin. The results of this study contrasted with the claimed in vitro antimicrobial activity of thyme oil and thymol: we observed no positive effects on rumen metabolism (i.e., N and VFA) or milk performance in dairy cows. Under the conditions of this study, including thyme oil or thymol at 50 mg/kg of DM had no benefits for rumen fermentation, nutrient utilization and milk performance in dairy cows.  相似文献   

8.
Two experiments were conducted to assess the effects of a mixture of dietary additives on enteric methane production, rumen fermentation, diet digestibility, energy balance, and animal performance in lactating dairy cows. Identical diets were fed in both experiments. The mixture of feed additives investigated contained lauric acid, myristic acid, linseed oil, and calcium fumarate. These additives were included at 0.4, 1.2, 1.5, and 0.7% of dietary dry matter, respectively (treatment ADD). Experimental fat sources were exchanged for a rumen inert source of fat in the control diet (treatment CON) to maintain isolipidic rations. Cows (experiment 1, n = 20; experiment 2, n = 12) were fed restricted amounts of feed to avoid confounding effects of dry matter intake on methane production. In experiment 1, methane production and energy balance were studied using open-circuit indirect calorimetry. In experiment 2, 10 rumen-fistulated animals were used to measure rumen fermentation characteristics. In both experiments animal performance was monitored. The inclusion of dietary additives decreased methane emissions (g/d) by 10%. Milk yield and milk fat content tended to be lower for ADD in experiment 1. In experiment 2, milk production was not affected by ADD, but milk fat content was lower. Fat- and protein-corrected milk was lower for ADD in both experiments. Milk urea nitrogen content was lowered by ADD in experiment 1 and tended to be lower in experiment 2. Apparent total tract digestibility of fat, but not that of starch or neutral detergent fiber, was higher for ADD. Energy retention did not differ between treatments. The decrease in methane production (g/d) was not evident when methane emission was expressed per kilogram of milk produced. Feeding ADD resulted in increases of C12:0 and C14:0 and the intermediates of linseed oil biohydrogenation in milk in both experiments. In experiment 2, ADD-fed cows tended to have a decreased number of protozoa in rumen fluid when compared with that in control cows. Total volatile fatty acid concentrations were lower for ADD, whereas molar proportions of propionate increased at the expense of acetate and butyrate.  相似文献   

9.
This experiment (replicated 3 × 3 Latin square design) was conducted to investigate the effects of lauric acid (LA) or coconut oil (CO) on ruminal fermentation, nutrient digestibility, ammonia losses from manure, and milk fatty acid (FA) composition in lactating cows. Treatments consisted of intraruminal doses of 240 g of stearic acid/d (SA; control), 240 g of LA/d, or 530 g of CO/d administered once daily, before feeding. Between periods, cows were inoculated with ruminal contents from donor cows and allowed a 7-d recovery period. Treatment did not affect dry matter intake, milk yield, or milk composition. Ruminal pH was slightly increased by CO compared with the other treatments, whereas LA and CO decreased ruminal ammonia concentration compared with SA. Both LA and CO decreased protozoal counts by 80% or more compared with SA. Methane production rate in the rumen was reduced by CO compared with LA and SA, with no differences between LA and SA. Treatments had no effect on total tract apparent dry matter, organic matter, N, and neutral detergent fiber digestibility coefficients or on cumulative (15 d) in vitro ammonia losses from manure. Compared with SA, LA and CO increased milk fat 12:0, cis-9 12:1, and trans-9 12:1 content and decreased 6:0, 8:0, 10:0, cis-9 10:1, 16:0, 18:0, cis 18:1, total 18:2, 18:3 n-3 and total polyunsaturated FA concentrations. Administration of LA and 14:0 (as CO) in the rumen were apparently transferred into milk fat with a mean efficiency of 18 and 15%, respectively. In conclusion, current data confirmed that LA and CO exhibit strong antiprotozoal activity when dosed intraruminally, an effect that is accompanied by decreases in ammonia concentration and, for CO, lowered methane production. Administration of LA and CO in the rumen also altered milk FA composition.  相似文献   

10.
This study was conducted to determine the effects of feeding Fermenten (Church and Dwight Co., Princeton, NJ) with or without dietary sucrose on ruminal fermentation, apparent total-tract nutrient digestibility, and nutrient utilization. Eight ruminally cannulated Holstein cows (163 ± 55 d in milk; mean ± standard deviation) were used in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Experimental diets were formulated with and without Fermenten (0 vs. 3.3% of dietary DM) at 2 dietary sugar concentrations (2.8 vs. 5.7%). Dietary treatment did not affect dry matter intake or apparent total-tract nutrient digestibility. Feeding Fermenten did not affect ruminal pH, but high-sugar diets tended to increase the daily minimum pH (5.61 vs. 5.42) and mean pH (6.17 vs. 6.30) compared with low-sugar diets. Ruminal ammonia concentration tended to be greater for cows fed Fermenten compared with control (18.1 vs. 15.9 mg/dL), but was not affected by dietary sugar concentration. Significant interactions between Fermenten and dietary sugar concentration were detected for some milk production responses. Fermenten treatment numerically increased milk fat yield (0.92 vs. 0.82 kg/d), 4% fat-corrected milk yield (24.3 vs. 21.9 kg/d), and milk energy output (18.2 vs. 16.4 Mcal/d) compared with control for cows fed low-sugar diets, but not for cows fed high-sugar diets. Increasing dietary sugar concentration did not enhance the effects of Fermenten, providing no support for the theory that synchronizing the availability of N and fermentable energy in the rumen improves nutrient utilization in lactating dairy cows.  相似文献   

11.
Six ruminally fistulated Holstein cows were utilized in a randomized block design to examine effects of yeast culture supplement on ruminal metabolism and apparent digestibility. Cows were fed a diet of 40% corn silage and 60% concentrate (DM basis). Treatments were control (supplement without yeast cells) and yeast culture supplement. Treatment periods were 6 wk. Ruminal pH, ammonia, molar proportions of acetate and isovalerate, and acetate: propionate ratio were lower and molar proportions of propionate and valerate higher in cows receiving yeast. The concentration of anaerobic bacteria tended to be higher and cellulolytic bacteria concentrations were greater in cows fed yeast than in cows receiving control diet. Supplemental yeast did not affect molar proportions of isobutyrate or butyrate, total VFA, or viable yeast concentrations in ruminal fluid. Ruminal liquid dilution rate and total tract apparent digestibilities were not different between treatments. Rate of disappearance of cellulose in vitro was lower in cows receiving yeast. Less variation in ammonia concentrations and microbial numbers suggest that ruminal fermentation was more stable in cows receiving yeast culture supplement.  相似文献   

12.
《Journal of dairy science》2023,106(7):4608-4621
The aim of this trial was to determine the effect of a garlic and citrus extract supplement (GCE) on the performance, rumen fermentation, methane emissions, and rumen microbiome of dairy cows. Fourteen multiparous Nordic Red cows in mid-lactation from the research herd of Luke (Jokioinen, Finland) were allocated to 7 blocks in a complete randomized block design based on body weight, days in milk, dry matter intake (DMI), and milk yield. Animals within each block were randomly allocated to a diet with or without GCE. The experimental period for each block of cows (one for each of the control and GCE groups) consisted of 14 d of adaptation followed by 4 d of methane measurements inside the open circuit respiration chambers, with the first day being considered as acclimatization. Data were analyzed using the GLM procedure of SAS (SAS Institute Inc.). Methane production (g/d) and methane intensity (g/kg of energy-corrected milk) were lower by 10.3 and 11.7%, respectively, and methane yield (g/kg of DMI) tended to be lower by 9.7% in cows fed GCE compared with the control. Dry matter intake, milk production, and milk composition were similar between treatments. Rumen pH and total volatile fatty acid concentrations in rumen fluid were similar, whereas GCE tended to increase molar propionate concentration and decrease the molar ratio of acetate to propionate. Supplementation with GCE resulted in greater abundance of Succinivibrionaceae, which was associated with reduced methane. The relative abundance of the strict anaerobic Methanobrevibacter genus was reduced by GCE. The change in microbial community and rumen propionate proportion may explain the decrease in enteric methane emissions. In conclusion, feeding GCE to dairy cows for 18 d modified rumen fermentation and microbiota, leading to reduced methane production and intensity without compromising DMI or milk production in dairy cows. This could be an effective strategy for enteric methane mitigation of dairy cows.  相似文献   

13.
Post-ileal carbohydrate fermentation in dairy cows converts blood urea nitrogen (BUN) into fecal microbial protein. This should reduce urinary N, increase fecal N, and reduce manure NH3 volatilization. However, if intestinal BUN recycling competes with ruminal BUN recycling, hindgut fermentation may reduce NH3 for rumen microbial protein synthesis. Eight lactating Holstein cows were used in a replicated 4 × 4 Latin square design with 14-d periods. Treatments were arranged as a 2 × 2 factorial. Diets contained either adequate rumen-degradable protein (RDP; high RDP) or were 28% below predicted RDP requirements (low RDP). Cows received abomasal infusions of either 10 L/d of saline or 10 L/d of saline containing 1 kg/d of inulin. We hypothesized that reducing ruminal NH3, either by restricting RDP intake or by diverting BUN to feces with inulin, would reduce rumen microbial protein synthesis, as would be evidenced by significant main effects of treatments on rumen NH3, milk production, and urinary purine derivative excretion. Furthermore, we thought it likely that effects of inulin might be greater when rumen NH3 was already low, as would be indicated by significant interactions between inulin infusion and dietary RDP level on rumen NH3, milk production, and urinary purine derivative excretion. Rumen NH3 was reduced by the low-RDP diet, but urinary purine derivative excretion and milk production were unaffected. However, the low-RDP diet reduced apparent total tract digestibility of OM and starch and reduced in situ rumen NDF digestibility. Abomasal inulin reduced the BUN concentration but did not affect milk yield or rumen NH3, suggesting that RDP requirements are not affected by hindgut fermentation. Inulin shifted 23 g/d of N from urine to feces. However, based on fecal purine excretion, we estimated that only 8 g/d of the increased fecal N was due to increased fecal microbial output. Inulin reduced true digestibility of dietary protein or increased nonmicrobial as well as microbial endogenous losses. This latter effect may be an artifact of our experimental model that delivers easily fermented, soluble fiber to the small intestine. Normal dietary alterations to similarly increase large intestinal fermentation would probably arise from larger quantities of less rapidly digested carbohydrates. Increasing hindgut fermentation in practical diets should reduce manure NH3 volatilization without impairing rumen fermentation, but the reduction is likely to be small.  相似文献   

14.
The objective was to measure effects of 3-nitrooxypropanol (3NP) on methane production of lactating dairy cows and any associated changes in digestion and energy and N metabolism. Six Holstein-Friesian dairy cows in mid-lactation were fed twice daily a total mixed ration with maize silage as the primary forage source. Cows received 1 of 3 treatments using an experimental design based on two 3 × 3 Latin squares with 5-wk periods. Treatments were a control placebo or 500 or 2,500 mg/d of 3NP delivered directly into the rumen, via the rumen fistula, in equal doses before each feeding. Measurements of methane production and energy and N balance were obtained during wk 5 of each period using respiration calorimeters and digestion trials. Measurements of rumen pH (48 h) and postprandial volatile fatty acid and ammonia concentrations were made at the end of wk 4. Daily methane production was reduced by 3NP, but the effects were not dose dependent (reductions of 6.6 and 9.8% for 500 and 2,500 mg/d, respectively). Dosing 3NP had a transitory inhibitory effect on methane production, which may have been due to the product leaving the rumen in liquid outflow or through absorption or metabolism. Changes in rumen concentrations of volatile fatty acids indicated that the pattern of rumen fermentation was affected by both doses of the product, with a decrease in acetate:propionate ratio observed, but that acetate production was inhibited by the higher dose. Dry matter, organic matter, acid detergent fiber, N, and energy digestibility were reduced at the higher dose of the product. The decrease in digestible energy supply was not completely countered by the decrease in methane excretion such that metabolizable energy supply, metabolizable energy concentration of the diet, and net energy balance (milk plus tissue energy) were reduced by the highest dose of 3NP. Similarly, the decrease in N digestibility at the higher dose of the product was associated with a decrease in body N balance that was not observed for the lower dose. Milk yield and milk fat concentration and fatty acid composition were not affected but milk protein concentration was greater for the higher dose of 3NP. Twice-daily rumen dosing of 3NP reduced methane production by lactating dairy cows, but the dose of 2,500 mg/d reduced rumen acetate concentration, diet digestibility, and energy supply. Further research is warranted to determine the optimal dose and delivery method of the product.  相似文献   

15.
The effects of digestibility of corn silage neutral detergent fiber (NDF) and dietary NDF content on ruminal digestion kinetics, site of nutrient digestion, and microbial N production efficiency were evaluated with eight multiparous high producing dairy cows in a duplicated 4 x 4 Latin square design with 21-d periods. Experimental diets contained corn silage from a brown midrib (bm3) hybrid or its isogenic normal control at two concentrations of dietary NDF (29 and 38%). The NDF digestibility estimated by a 30-h in vitro fermentation was higher for bm3 corn silage by 9.4 units (55.9 vs. 46.5%). Neither ruminal nor total tract NDF digestibility was affected by corn silage treatment. The bm3 corn silage diet decreased starch digestibility in the rumen and in the total tract, but increased postruminal starch digestibility compared with control diet. The bm3 corn silage diets increased microbial N flow to the duodenum and tended to decrease ruminal ammonia concentration. Microbial efficiency was greater for cows fed bm3 corn silage in spite of lower ruminal pH. Higher efficiency of microbial nitrogen production might be attributed to faster passage rate of NDF for cows fed bm3 corn silage compared with those fed control corn silage. Higher in vitro NDF digestibility might predict enhanced NDF fragility and ease of NDF hydrolysis in vivo. Enhanced in vitro NDF digestibility does not necessarily result in increased NDF digestibility either in the rumen or in the total tract, but possibly increases rate of passage and DMI, improving efficiency of microbial N production.  相似文献   

16.
The objectives of this study were to determine the effects of NutriDense and waxy corn hybrids as silage and grain sources on milk yield, milk composition, digestibility of dietary components, and rumen characteristics. Six multiparous (intact) and six primiparous (ruminally cannulated) Holstein cows were assigned at 72 to 90 d of lactation to a 3 x 6 Latin rectangle design experiment to treatment of: 1) control diet, 2) NutriDense corn diet, and 3) waxy corn diet. Diets consisted of 10.9% alfalfa silage, 32.8% corn silage, 27.9% cracked corn grain, and 28.4% other ingredients (DM basis). Milk, FCM, and milk fat and protein yields were higher for cows fed the waxy diet than those fed the control diet. Milk protein percentage tended to be higher for cows fed the control and waxy diets than those fed the NutriDense diet. Dry matter intake tended to be higher for cows fed the waxy diet than the NutriDense diet. Apparent DM, OM, CP, ADF, NDF, and gross energy digestibilities were similar among dietary treatments, while apparent starch digestibility was higher for the waxy corn than for the NutriDense corn. Rumen NH3-N concentration was higher for cows fed the NutriDense diet than for those fed the control and waxy diets. The proportion of ruminal propionate was higher for the waxy diet than the control diet. NutriDense and waxy corn hybrids can be effective substitutes for conventional yellow dent corn hybrids in lactating dairy cow rations.  相似文献   

17.
《Journal of dairy science》2021,104(12):12508-12519
The objective of this study was to evaluate the effects of exogenous enzymes on nutrient intake and digestibility, rumen fermentation, and productivity of mid-lactating cows. Experiment 1 was designed to test increasing doses [0, 0.5, 1.0, or 1.5 g/kg of dry matter (DM)] of a combination of 2 enzyme products with xylanase and β-glucanase activities (Ronozyme Wx and Ronozyme VP, respectively; DSM Nutritional Products) on rumen fermentation and total apparent digestibility. Enzyme combinations had a ratio of endo-1,3(4)-β-glucanase to endo-1,4-β-xylanase of 8:2 (wt/wt). For experiment 1, 8 rumen cannulated lactating cows were used into a double 4 × 4 Latin square design experiment with 14 d of diet adaptation and 7 d of sampling. Despite no differences in feed intake, carbohydrases linearly increased neutral detergent fiber digestibility. Treatments marginally affected rumen fermentation, where a linear trend for lower rumen pH and a linear trend for greater isobutyrate concentration were observed with increasing enzyme dose. A trend for lower rumen NH3-N concentration was observed for cows receiving carbohydrases in comparison with control group. When comparing all enzyme treatments against control group, cows fed enzymes tended to produce more 3.5% fat-corrected milk (FCM), produced more milk fat, and had greater blood glucose concentration. Experiment 2 evaluated 3 doses (0, 0.5, or 0.75 g/kg of DM) of the same combination of enzyme products on performance of cows (n = 36) in a complete randomized block (n = 12) design. Cows received treatments for 9 wk. No interaction effects between treatments and time were observed for all variables assessed in this study. In agreement with experiment 1, no differences were detected for feed intake, but cows fed the enzyme products tended to produce more 3.5% FCM and milk fat compared with control. In addition, cows fed enzymes exhibited greater efficiency of FCM production (FCM ÷ DM intake) compared with control. No differences were detected for intake and productivity when comparing the 2 doses of carbohydrases. In summary, the enzyme products tested in this study may improve feed efficiency due to greater milk fat concentration.  相似文献   

18.
The objective of this study was to determine the effect of replacing on isonitrogenous and isoenergetic basis soybean meal (SBM) and corn grain with ground or rolled faba bean (FB; Vicia faba major var. Baie-Saint-Paul) in dairy cow diets (17% of diet dry matter) on nutrient digestion, rumen fermentation, N utilization, methane production, and milk performance. For this purpose, 9 lactating cows were used in a replicated 3 × 3 Latin square design (35-d period) and fed (ad libitum) a total mixed ration (forage:concentrate ratio = 59:41 on a dry matter basis). In the concentrate portion, SBM and corn grain (control diet) were completely and partially replaced, respectively, with either ground or rolled FB. Ruminal degradability (in sacco) of crude protein was higher for ground FB (79.4%) compared with SBM (53.3%) and rolled FB (53.2%). Including FB in the diet did not affect dry matter intake, milk production, and milk composition. Experimental treatment had no effect on total volatile fatty acid concentration, acetate-to-propionate ratio, and protozoa numbers. Compared with cows fed the control diet, ruminal NH3 concentration increased and tended to increase for cows fed ground FB and rolled FB, respectively; however, we found no difference in ruminal NH3 concentration between the 2 processed FB. Apparent total-tract digestibility of crude protein was similar between cows fed the control diet and cows fed rolled FB and tended to increase for cows fed ground FB compared with cows fed the control diet. Feeding rolled FB decreased CP digestibility compared with feeding ground FB. Urinary and manure (feces + urine) N excretion (g/d or as a proportion of N intake) were not affected by the inclusion of FB in the diet. Enteric CH4 production was similar among the experimental diets. Results from this study show that including FB (17% of dietary dry matter) at the expense of SBM and corn grain in the diet had no effect on milk production, N excretion, and enteric CH4 production of dairy cows.  相似文献   

19.
《Journal of dairy science》2018,101(1):201-221
The objectives of this experiment were to evaluate the effect of feeding a culture of Saccharomyces cerevisiae on rumen metabolism and digestibility when cows are fed diets varying in starch content. Four lactating Holstein cows were assigned to a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Treatments were low starch (LS; 23% of diet DM) and no yeast culture (YC; LS-control), LS and 15 g of YC/d (LS-YC), high starch (HS; 29% of diet DM) and no YC (HS-control), and HS and 15 g of YC/d (HS-YC). Periods lasted 28 d, with the last 9 d for data collection. Days 20 to 24 were used to determine production, nutrient flow, and digestibility. On d 25, 3 kg of corn grain DM was placed in the rumen 1 h before the morning feeding, and yields of milk and milk components were measured after the challenge. Blood was sampled −1, 3, 7, and 11 h relative to the morning feeding on d 24 and 25. Rumen pH was measured continuously on d 24 and 25. Rumen papillae were collected on d 24 and 28 to quantify mRNA expression of select genes. Supplementing YC increased yields of milk (26.3 vs. 29.6 kg/d), energy-corrected milk (ECM; 26.5 vs. 30.3 kg/d), fat (0.94 vs. 1.08 kg/d), true protein (0.84 vs. 0.96 kg/d), and ECM/dry matter intake (1.15 vs. 1.30) compared with the control but did not affect dry matter intake (22.6 vs. 22.9 kg/d). Cows fed HS had increased milk true protein percentage (3.18 vs. 3.31%) and yield (0.87 vs. 0.94 kg/d) compared with cows fed LS. Feeding HS-YC increased the proportion of dietary N incorporated into milk true protein from 24.9% in the other 3 treatments to 29.6%. Feeding HS increased the concentration of propionate (21.7 vs. 32.3 mM) and reduced that of NH3-N (8.3 vs. 6.7 mg/dL) in rumen fluid compared with the control, and combining HS with YC in HS-YC tended to increase microbial N synthesis compared with LS-YC (275 vs. 322 g/d). Supplementing YC to cows fed HS reduced plasma haptoglobin and rumen lactate concentrations, increased mean rumen pH, reduced the time with pH <6.0, and prevented the decrease in rumen neutral detergent fiber digestion caused by HS. Cows fed HS had less total-tract digestion of organic matter (73.9 vs. 72.4%) because of reduced acid detergent fiber (57.6 vs. 51.7%) and neutral detergent fiber (60.9 vs. 56.7%) digestibility. Production performance after the challenge was similar to that before the challenge, and YC improved yield of ECM. After the challenge, supplementing YC tended to reduce rumen lactate concentration compared with the control and reduced haptoglobin in cows fed HS. Feeding HS but not YC increased expression in rumen papillae of genes for receptors (FFAR2 and FFAR3) and transporter (SLC16A3) of short-chain fatty acids but did not affect genes involved in transport of Na+/H+ or water or in inflammatory response. Supplementing YC to dairy cows improved lactation performance in diets containing low or high starch, and mechanisms might be partially attributed to improvements in rumen pH, digestion of fiber, microbial N synthesis, and reduction in acute phase response.  相似文献   

20.
A trial with four ruminally and duodenally cannulated, late-lactation dairy cows was conducted to investigate the effect of dietary carbohydrate (CHO) composition and availability on ruminal ammonia N utilization and transfer into milk protein. Two diets were fed at 8-h intervals in a crossover design. The diets differed in CHO composition: the ruminally fermentable non-structural carbohydrates (RFSS) diet (barley and molasses) contained a larger proportion of ruminally available CHO in the nonstructural carbohydrate fractions and the ruminally fermentable fiber (RFNDF) diet (corn, beet pulp, and brewer's grains) contained a larger proportion of CHO in ruminally available fiber. Nitrogen-15 was used to label ruminal ammonia N and consequently microbial and milk N. Fermentation acids, enzyme activities, and microbial protein production in the rumen were not affected by diet. Ruminal ammonia concentration was lowered by RFNDF. Ruminal and total tract digestibility of nutrients did not differ between diets except that apparent ruminal degradability of crude protein was lower for RFNDF compared with RFSS. Partitioning of N losses between urine and feces was also not affected by diet. Milk yield and fat and protein content were not affected by treatment. Average concentration of milk urea N was lower for RFNDF than for RFSS. Proportion of milk protein N originating from ruminal microbial N (based on the areas under the 15N-enrichment curves) was higher for RFNDF than for RFSS. Cumulative recovery of 15N in milk protein was 13% higher for RFNDF than for RFSS indicating enhanced transfer of 15N-ammonia into milk protein with the former diet. The results suggested that, compared to diets containing higher levels of ruminally fermentable starch, diets providing higher concentration of ruminally fermentable fiber may enhance transfer of ruminal ammonia and microbial N into milk protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号