首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, surface-potential-based analytical threshold voltage model for underlap Fully Depleted Silicon-On-Insulator MOSFET (underlap-SOI) is developed by solving two-dimensional Poisson equation. The gate underlap at source/drain (S/D) has different boundary conditions as compared to channel region under the gate dielectric that divide the whole channel into three regions. It leads us to derive the new surface potential model for three different channel regions, i.e. the region under the gate dielectric and two gate underlap regions at S/D. The effects of underlap length, channel length, body thickness, channel doping concentration, metal gate work function and gate dielectric constant on threshold voltage have been included in our model. The threshold voltage dependence on different device parameters has been studied using analytical model and simulations. The closeness between the simulation results and model results show that the analytical model accurately calculate the threshold voltage values for large range of device parameters.  相似文献   

2.
A planar double-gate SOI MOSFET (DG-SOI) with thin channel and thick source/drain (S/D) was successfully fabricated. Using both experimental data and simulation results, the S/D asymmetric effect induced by gate misalignment was studied. For a misaligned DG-SOI, there is gate nonoverlapped region on one side and extra gate overlapped region on the other side. The nonoverlapped region introduces extra series resistance and weakly controlled channel, while the extra overlapped region introduces additional overlap capacitance and gate leakage current. We compared two cases: bottom gate shift to source side (DG/spl I.bar/S) and bottom gate shift to drain side (DG/spl I.bar/D). At the same gate misalignment value, DG/spl I.bar/S resulted in a larger drain-induced barrier lowering effect and smaller overlap capacitance at drain side than DG/spl I.bar/D. Because of reduced drain-side capacitance, the speed of three-stage ring oscillator of DG/spl I.bar/S, with 20% gate misalignment length (L/sub mis/) over gate length (L/sub g/), or L/sub mis//L/sub g/=20%, was faster than that of two-gate aligned DG-SOI.  相似文献   

3.
We study the effects of gate line edge roughness (LER) on doping profiles of MOSFET transistors using two-dimensional numerical calculation and advanced process simulation. Gate LER transfers the roughness to doping profiles self-aligned to gate edges such as source/drain (S/D) extensions. We found that the transferred roughness has a dominant contribution to the LER effects on device performance. Implantation scattering and diffusion are low-pass filters in the roughness transfer. Low frequency gate LER with 30 nm or larger correlation length (L/sub C/) causes rough S/D-channel junctions, which approximately follow the roughness of gate edges with slight reduction in the RMS roughness value under typical thermal budget. Implantation scattering and diffusion smooth off a major part of the high frequency junction roughness induced by gate LER with 5 nm or smaller L/sub C/. In addition, the average lateral diffusion length is enhanced when this high-frequency roughness is present.  相似文献   

4.
In the present work, by investigating the influence of source/drain (S/D) extension region engineering (also known as gate-underlap architecture) in planar Double Gate (DG) SOI MOSFETs, we offer new design insights to achieve high tolerance to gate misalignment/oversize in nanoscale devices for ultra-low-voltage (ULV) analog/rf applications. Our results show that (i) misaligned gate-underlap devices perform significantly better than DG devices with abrupt source/drain junctions with identical misalignment, (ii) misaligned gate underlap performance (with S/D optimization) exceeds perfectly aligned DG devices with abrupt S/D regions and (iii) 25% back gate misalignment can be tolerated without any significant degradation in cut–off frequency (fT) and intrinsic voltage gain (AVO). Gate-underlap DG devices designed with spacer-to-straggle ratio lying within the range 2.5 to 3.0 show best tolerance to misaligned/oversize back gate and indeed are better than self-aligned DG MOSFETs with non-underlap (abrupt) S/D regions. Impact of gate length and silicon film thickness scaling is also discussed. These results are very significant as the tolerable limit of misaligned/oversized back gate is considerably extended and the stringent process control requirements to achieve self-alignment can be relaxed for nanoscale planar ULV DG MOSFETs operating in weak-inversion region. The present work provides new opportunities for realizing future ULV analog/rf design with nanoscale gate–underlap DG MOSFETs.  相似文献   

5.
In this paper, the short-channel effect in ultrathin body (UTB) SOI Flash memory cell induced by the floating-gate is investigated by a newly developed two-dimensional analytical model. A concept of effective natural length (/spl lambda//sub eff/) is introduced as a measure of the impact of the floating-gate on the scaling limit. Even though scaling the channel thickness can significantly reduce SCE in UTB MOSFET, it becomes less effective in floating-gate device due to the floating polysilicon induced gate coupling. To minimize the floating-gate induced SCEs, the drain to floating-gate coupling has to be minimized.  相似文献   

6.
Scaling fully depleted SOI CMOS   总被引:2,自引:0,他引:2  
Quasi-two-dimensional (2-D) device analyses, 2-D numerical device simulations, and circuit simulations of nanoscale conventional, single-gate fully depleted (FD) silicon-on-insulator (SOI) CMOS are done to examine the scalability and performance potential of the technology. The quasi-2-D analyses, which can apply to double-gate devices as well, also provide a simple expression to estimate the effective channel length (L/sub eff/) of FD/SOI MOSFETs. The insightful results show that threshold-voltage control via channel doping and polysilicon gates is not a viable option for extremely scaled FD/SOI CMOS, and hence that undoped channels and metal gate(s) with tuned work function(s) must be employed. Quantitative as well as qualitative insights gained on the short-channel effects reveal the need for ultrathin films (t/sub Si/ < 10 nm) for L/sub eff/ < 50 nm. However, the implied manufacturing burden, compounded by effects of carrier-energy quantization for ultrathin t/sub Si/, forces a pragmatic limit on t/sub Si/ of about 5 nm, which in turn limits the scalability to L/sub eff/ = 25-30 nm. Unloaded CMOS-inverter ring-oscillator simulations, done with our process/physics-based compact model (UFDG) in SPICE3, show very good performance for L/sub eff/ = 35 nm, and suggest viable technology designs for low-power as well as high-performance applications. These simulations also reveal that moderate variations in t/sub Si/ can be tolerated, and that the energy quantization significantly influences the scaled-technology performance and hence must be properly accounted for in optimal FD/SOI MOSFET design.  相似文献   

7.
Nanoscale double-gate (DG) FinFETs with undoped fin bodies are shown to have threshold voltages (Vt) that can be adjusted for independent I ON and I OFF control by allowing limited source/drain (S/D) dopants in the channel. S/D engineering of the lateral doping profile in the extension is proposed as a viable means for effecting such channel doping [as well as gate-S/D (G-S/D) underlap] and, thus, adjusting Vt for optimal I ON/I OFF in low-power and high-performance applications of nanoscale-FinFET CMOS. Physics-based device simulations, numerical simulations, and measured current-voltage characteristics are used to demonstrate and support the proposed Vt design approach.  相似文献   

8.
M.H Juang   《Solid-state electronics》1999,43(12):2209-2213
A practical device scheme for designing sub-0.25 μm p-MOSFET's has been examined with respect to the dopant profile of source/drain (S/D) extension. Though shallow junction was reported to be helpless to reduce short channel effect for devices with the same effective gate length (Leff), shallow-junction techniques are critically important to the practical device/process design for controlling the overlap of S/D extension with the gate. Adjusting the lateral dopant diffusion of S/D extension by other processes except shallow junction techniques may degrade the process control and the resultant performance for devices of the target gate length. In terms of a practical IC technology for sub-0.25 μm p-MOSFET's, an Leff value properly smaller than the target gate length should be employed to well control the short channel effect and achieve the driving capability as large as possible. Hence, a scheme that properly adjusts the doping concentration for p-S/D extension formed by a given shallow-junction technique is significantly practical for designing the sub-0.25 μm p-MOSFET's with trade-off between driving capability and short channel effect.  相似文献   

9.
亚50nm自对准双栅MOSFET的结构设计   总被引:1,自引:1,他引:0  
殷华湘  徐秋霞 《半导体学报》2002,23(12):1267-1274
描述了一种用综合性方法设计的亚50nm自对准双栅MOSFET,该结构能够在改进的主流CMOS技术上实现.在这种方法下,由于各种因素的影响,双栅器件的栅长、硅岛厚度呈现出不同的缩减限制.同时,侧面绝缘层在器件漏电流和电路速度上表现出特有的宽度效应.建立了关于这种效应的模型,并提供了相关的设计指导.另外,还讨论了一种新型的沟道掺杂设计,命名为SCD.利用SCD的DG器件能够在体反模式和阈值控制间取得较好的平衡.最后,总结了制作一个SADG MOSFET 的指导原则.  相似文献   

10.
Relative values of on-state current in undoped-body double-gate (DG) and triple-gate (TG) FinFETs are examined via three-dimensional numerical device simulations. The simulation results reveal significant bulk inversion in the fin bodies, which limits the benefit of the third (top) gate in the TG FinFET and which negates the utility of the commonly defined effective gate width (W/sub eff/=2h/sub Si/+w/sub Si/). Even the concept of W/sub eff/ for the TG FinFET is invalidated, but the proper W/sub eff/ for the DG FinFET is defined. Physical insights attained from the simulations further solidify our notion, based previously on gate layout-area inefficiency, that the third gate is neither desirable nor beneficial.  相似文献   

11.
Modeling and optimization of fringe capacitance of nanoscale DGMOS devices   总被引:3,自引:0,他引:3  
We analyze the impact of gate electrode thickness and gate underlap on the fringe capacitance of nanoscale double-gate MOS (DGMOS) transistors. We propose an analytical fringe capacitance model considering gate underlap and finite source/drain length. A comparison with the simulation results show that the model can accurately estimate the fringe capacitance of the device. We show that an optimum gate underlap can significantly reduce the fringe capacitance resulting in higher performance and lower power consumption. Also, the effects of process variation in gate underlap devices are discussed. Simulation results on a three-stage ring oscillator show that with optimum gate underlap 32% improvement in delay can be achieved.  相似文献   

12.
In this paper, we analyze the flicker and thermal noise model for underlap p-channel DG FinFET in weak inversion region. During the analysis of current and charge model, minimum channel potential i.e. virtual source is considered. Initially, the drain current for both long and short channel of DG FinFET are evaluated and found to be well interpreted with experimental results. Further, the flicker and thermal noise spectral density are derived. The flicker noise power spectral density is compared with published experimental results, which shows a good agreement between proposed model and experimental result. During calculation we have considered variation of scattering parameter and furthermore, the degradation of effective mobility is taken into account for ultrathin body. The variation of structural parameters such as gate length (Lg), body thickness (tSi) and underlap length (Lun) are also considered. The degradation of gate noise voltage with frequency, underlap length and gate length signify that p-channel DG FinFET device can be a promising candidate for analog and RF applications.  相似文献   

13.
In this paper, a novel design of the double doping polysilicon gate MOSFET device is proposed, which has a p+ buried layer near the drain, and relatively thicker D-gate oxide film (DDPGPD MOSFET). The detailed fabrication process for this device is designed using process simulation software called TSUPREM, and the device structure plan is further used in MEDICI simulation. The effect of gate doping concentration is investigated, and it is found that the device Vth is only influenced by the S-gate; furthermore, the device can get a larger driving current by increasing the doping concentration of D-gate. Compared to other conventional DDPG MOSFETs, the short-channel effects (SCEs) including the off-state current, the gate leakage current and the drain induced barrier lowering effect (DIBL) can be effectively suppressed by the p+ buried layer and thicker D-gate oxide film. Additionally, the other parameters of the device such as the driving current are not seriously affected by the proposed design modifications.  相似文献   

14.
We present a novel method for the determination of the two-dimensional (2D) doping profile of a MOSFET using inverse modeling. In our method, the logarithms of the donors and accepters concentrations are each represented by a tensor product spline (TPS). The TPS coefficients are extracted by nonlinear, least squares optimization from source/drain (S/D) diode and gate capacitance data. After validating the method by applying it to simulated capacitance data, we present the results of using the new technique to extract the 2D profile of a 0.42 μm gate length CMOS technology N-channel device  相似文献   

15.
We propose an analytical model for drain current and inversion charge in the subthreshold region for an underlap DG FinFET by using the minimum channel potential method,i.e.,the virtual source.The flicker and thermal noise spectral density models are also developed using these charge and current models expression.The model is validated with already published experimental results of flicker noise for DG FinFETs.For an ultrathin body,the degradation of effective mobility and variation of the scattering parameter are considered.The effect of device parameters like gate length Lg and underlap length Lun on both flicker and thermal noise spectral densities are also analyzed.Increasing Lg and Lun,increases the effective gate length,which reduces drain current,resulting in decreased flicker and thermal noise density.A decrease of flicker noise is observed for an increase of frequency, which indicates that the device can be used for wide range of frequency applications.  相似文献   

16.
A novel nanoscale MOSFET with a source/drain-to-gate non-overlapped and high-k spacer structure has been demonstrated to reduce the gate leakage current for the first time.The gate leakage behaviour of the novel MOSFET structure has been investigated with the help of a compact analytical model and Sentaurus simulation. A fringing gate electric field through the dielectric spacer induces an inversion layer in the non-overlap region to act as an extended S/D(source/drain) region.It is found that an optimal source/drain-to-gate non-overlapped and high-A:spacer structure has reduced the gate leakage current to a great extent as compared to those of an overlapped structure.Further,the proposed structure had improved off current,subthreshold slope and drain induced barrier lowering(DIBL) characteristics.It is concluded that this structure solves the problem of high leakage current without introducing extra series resistance.  相似文献   

17.
It has been known that using selective epitaxial growth (SEG) of silicon, to elevate source/drain regions, is beneficial to digital CMOS by reducing the junction leakage. In addition, this architecture also reduces the gate resistance by enabling a T-shape gate and allowing thicker silicides, which is beneficial for RF-CMOS regarding increased maximum oscillation frequency (f/sub max/) and lowering of the noise figure (NF). In this paper, we report the impact of the SEG-deep source/drain implant (DSDI) process sequence and Co silicide thickness on DC and RF performance of NMOS transistors. Up to a 28%-45% improvement in f/sub max/ is achievable due to a T-shaped gate and thicker Co, made possible by an elevated source/drain (/sup E/S/D) architecture. The maximum transconductance (g/sub m/) of the /sup E/S/D device reaches a value of 1100 mS/mm, which in turn gives a very high f/sub T/ of 150 GHz. The low gate sheet resistance obtained with this architecture is also very beneficial for suppressing noise figure in the low-noise amplifier (LNA) circuit demonstrated in this paper. Furthermore, it is shown by simulation that the noise performance of an RF LNA improves due to the SEG and the Co thickness in the T-shaped gate of the NMOS transistor.  相似文献   

18.
In this paper, the effect of gate tunneling current in ultra-thin gate oxide MOS devices of effective length (L/sub eff/) of 25nm (oxide thickness=1.1 nm), 50 nm (oxide thickness=1.5 nm) and 90 nm (oxide thickness=2.5 nm) is studied using device simulation. Overall leakage in a stack of transistors is modeled and the opportunities for leakage reduction in the standby mode of operation are explored for scaled technologies. It is shown that, as the contribution of gate leakage relative to the total leakage increases with technology scaling, traditional techniques become ineffective in reducing overall leakage current in a circuit. A novel technique of input vector selection based on the relative contributions of gate and subthreshold leakage to the overall leakage is proposed for reducing total leakage in a circuit. This technique results in 44% savings in total leakage in 50-nm devices compared to the conventional stacking technique.  相似文献   

19.
Continued scaling of CMOS technology to achieve high performance and low power consumption of semiconductor devices in the complex integrated circuits faces the degradation in terms of electrostatic integrity,short channel effects (SCEs),leakage currents,device variability and reliability etc.Nowadays,multigate structure has become the promising candidate to overcome these problems.SOI FinFET is one of the best multigate structures that has gained importance in all electronic design automation (EDA) industries due to its improved short channel effects (SCEs),because of its more effective gate-controlling capabilities.In this paper,our aim is to explore the sensitivity of underlap spacer region variation on the performance of SOI FinFET at 20 nm channel length.Electric field modulation is analyzed with spacer length variation and electrostatic performance is evaluated in terms of performance parameter like electron mobility,electric field,electric potential,sub-threshold slope (SS),ON current (Ion),OFF current (Ioff) and Ion/Ioff ratio.The potential benefits of SOI FinFET at drain-to-source voltage,VDS =0.05 V and VDS =0.7 V towards analog and RF design is also evaluated in terms of intrinsic gain (Av),output conductance (gd),trans-conductance (gm),gate capacitance (Cgg),and cut-off frequency (fT =gm/2πCgg) with spacer region variations.  相似文献   

20.
Hot-electron degradation in short-channel (0.50 mu m and 0.83 mu m) double-implanted lightly doped drain (DI-LDD) devices was characterised using DC stress tests. Compared to lightly doped drain (LDD) devices of the same effective channel length L/sub eff/, the measurements indicate that channel hot-electron injection is more prevalent in devices with the p/sup +/-pocket implant due to a higher peak channel electric field. Degradation is more severe in both the drain current and transconductance. However, an improvement in short-channel effects was seen in DI-LDD devices over LDD devices. For the same L/sub eff/, the punch-through voltage was higher and the subthreshold swing lower for the DI-LDD devices.<>  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号