共查询到18条相似文献,搜索用时 62 毫秒
1.
对垃圾进行回收益处颇多,不仅可以节约资源,还有助于自然环境保护。在传统的垃圾回收中,一般会消耗大量的人力和物力,本文基于现有单阶段目标检测算法YOLOv5s再结合注意力机制和RFB感受野模块,提出一种兼顾检测速度与精度的YOLOv5s改进模型,该模型可运用于室内智能垃圾回收机器人或垃圾场处理终端中。首先对RFB模块的结构做出调整并利用注意力机制进行改进,在一定程度上克服了RFB模块引入其他不必要特征信息的缺点;然后在算法中引入改进后的RFB模块,使算法能更好地与不同尺度的垃圾物体相匹配,提高了检测的精度;并根据数据集目标物体的特点重新调整了锚框大小。实验结果表明,YOLOv5s-SERFB在数据集TrashNet-Plus上有良好的表现,最终改进模型的mAP为91.7%,相比于原始的YOLOv5s模型高出2.2%,算法能较好地满足实时检测任务的需要,同时表现出良好的检测效果。 相似文献
2.
为了解决现有的目标检测方法在雾天场景下存在识别准确率低、易漏检的问题,提出一种改进YOLOv5s的雾天车辆检测方法。首先,以VisDrone数据集为基础,通过大气散射模型生成轻雾数据集(LightFogVisDrone)和浓雾数据集(ThickFogVisDrone),并收集真实雾天场景图片组成混合浓度数据集(MixFogData);其次,对原始YOLOv5s的Mosaic数据增强方式进行改进,由原始的4张图片改为9张图片进行随机剪切,减少灰色背景面积,加快模型收敛,提高训练效率,在预测端之前添加CBAM注意力机制,以此来增强模型的图像特征提取能力,改善遮挡目标与小目标的漏检问题;最后,优化NMS非极大抑制值先验框,改善车辆目标的漏检问题。实验结果表明:与原始YOLOv5s相比,改进YOLOv5s在轻雾、浓雾和混合雾气状态下的平均精确率分别提高了16.14、16.16和15.05百分点。改进YOLOv5s对于雾天环境下车辆目标的检测具有有效性和实用性。 相似文献
3.
针对现有遥感图像目标检测中背景复杂和尺度变化大等问题,基于 YOLOv5 模型提出了一种 改进的遥感图像目标检测算法。 首先,利用 Mosaic 数据增强方法重构数据集,以改善模型的训练效 果和鲁棒性;其次,在 YOLOv5s 的 Backbone 中添加 SE 注意力机制,使改进后模型能够更精准地捕 捉目标特征信息;最后,采用 BiFPN 替代原模型中的 FPN+PAN 结构,使模型能够进行不同尺度的特 征融合,以减少检测过程中浅层信息的丢失。 实验结果表明,相较于原模型,改进后模型的平均精度 均值、准确率和召回率都有所提升;相较于原模型,改进后模型具有更强的特征提取能力及更快的检 测效率。 相似文献
4.
冲压件在生产过程中容易出现裂纹、划痕、起皱、凹凸点等缺陷。目前,生产线上的冲压件缺陷检测以人工检测为主,效率低,且容易造成漏检。为此,提出了一种基于改进YOLOv5模型的缺陷检测算法。为了提高缺陷部分的关注度,更好地聚焦缺陷,本文在YOLOv5模型的主干网络中引入CA注意力模块。为了进一步提升模型的精度,本文通过对比实验,将目标框损失函数改为 GIoU,提升了定位精度。实验表明,相较于原模型,改进后的YOLOv5模型精准度、召回率、mAP值均得到提升。 相似文献
5.
针对复杂工程场景常用的行人检测方法(尤其在小目标检测方面)精度低、复杂度高的问题,提出一种基于YOLOv5网络的改进识别方法。在骨干网络与颈部网络引入ECA注意力机制,提升模型对通道特征的关注度以抑制背景噪声;使用加权双向特征金字塔结构BIFPN对颈部网络进行修改,加强模型对不同尺度特征融合;使用Ghost模块替换骨干网络与颈部网络的部分卷积,减少模型参数、缩小体积。结果表明:提出的改进模型检测精度达到了88.4%,同时,模型的复杂度(参数量与模型大小)仅为13.5×106与6.67 MB;与目前主流的深度学习方法相比,该算法在检测精度与复杂度上具有更好的性能,在复杂的场景下具有较好的识别效果。 相似文献
6.
针对现有安全帽检测方法普遍存在的复杂场景下小目标检测效果差、容易出现错检漏检情况、 鲁棒性较低等问题,提出基于改进 YOLOv5 的安全帽检测方法。 在主干网络中添加 SimAM 注意力 机制,使模型在不额外增加参数的前提下对三维特征点的不同重要性进行表征和强化;在颈部网络 中增加小目标检测层,以丰富目标细粒度信息;使用 Decoupled-Head 代替原模型的 YOLOHead 模 块,将分类、回归任务分离进行。 实验结果表明,该方法的平均精度均值达到 93. 17%,能够满足复杂 场景下的安全帽检测要求。 相似文献
7.
针对交通标识在图像中占比小、检测精度低且周围环境复杂等问题,提出一种基于改进YOLOv5s的算法.首先,在主干网络部分添加注意力机制ECA(Efficient Channel Attention,高效通道注意力),增强网络的特征提取能力,有效解决了周围环境复杂的问题;其次,提出HASPP(Hybrid Atrous Spatial Pyramid Pooling,混合空洞空间金字塔池化),增强了网络结合上下文的能力;最后,修改网络中的Neck结构,使高层特征与底层特征有效融合,同时避免了跨卷积层造成的信息丢失.实验结果表明,改进后的算法在交通标识数据集上取得了94.4%的平均检测精度、74.1%的召回率以及94.0%的精确率,较原始算法分别提升了3.7、2.8、3.4个百分点. 相似文献
8.
针对电厂生产作业现场光照条件受限、背景复杂这一现状,为了保障捞渣机的安全高效运行,提出了一种改进YOLOv5s的捞渣机异常状态检测方法。该方法主要是在YOLOv5s网络的基础上,引入ShuffleNet替换原有的主干网络,通过减少网络参数来实现网络的轻量化;同时在ShuffleNet中加入改进的卷积注意力模块,通过串联空间和通道注意力机制,对捞渣机刮板目标特征给予更多的关注;引入加权双向特征金字塔BiFPN和边框回归损失SIoU函数获取特征信息更为有效的特征图提升目标检测精度。研究结果表明,改进后的模型参数量显著减少,模型体积减小了15.2%,平均精确率均值mAP提升了2.2%,检测时间下降了58.0%。在确保检测准确率的同时,实现了对捞渣机异常状态的实时准确检测。 相似文献
9.
10.
行人检测与识别技术在交通管理、智能监控等领域具有重要的应用价值.针对现有行人检测与识别存在的检测精度低、识别困难等问题,提出了一种融合SE注意力模块的YOLOv5 算法和ResNet50 网络的行人检测与识别系统.在Backbone网络中引入SE注意力模块,以捕获更加丰富的特征信息,从而提升模型的检测精度;采用ResNet50 网络对裁剪图片进行识别检索.实验结果表明,该算法的检测精度较高,能够识别复杂场景下的行人,基本满足不同场景下的行人检测与识别要求. 相似文献
11.
针对无人机航拍视角下图像目标特征尺寸小且存在背景复杂、分布密集的问题,提出了一种基于YOLOv5的轻量化无人机航拍小目标检测改进算法GA-YOLO。该算法改进了Mosaic数据增强方法和网络整体结构,并增加了微小物体检测头,同时设计了轻量化的全局注意力模块和并行结构的空间通道注意力机制模块,提高了网络的全局特征提取能力和训练过程中卷积通道之间的竞争和合作关系。以4.0版本的YOLOv5s为基准,在公开无人机航拍数据集VisDrone2019-DET上实验,结果表明,改进后的模型相较于原模型,参数量下降了48%,计算量下降了26%,而mAP@0.5提高了4.9个百分点,mAP@0.5:0.95提高了3.3个百分点,有效地提高了无人机空中视角下对密集型小目标的检测能力。 相似文献
12.
车道线检测在智能交通领域占有重要地位,其检测的准确度和速度对于辅助驾驶以及自动驾驶有重要影响.针对目前深度学习方法识别车道线精度差、速度慢的问题,提出了一种高效的车道线分割方法LaneSegNet.首先基于编码和解码网络原理构建主干网络Lane-Net,用于提取车道线特征信息并分割出车道线;然后使用多尺度空洞卷积特征融合网络,可以极大地扩充模型的感受野,提取全局特征信息;最后使用混合注意力网络获取丰富的车道线特征,并增强与当前任务相关的信息.实验结果表明:在TuSimple数据集上,该方法检测车道线的准确率为97.6%;在CULane数据集上,该方法在标准路面的检测准确率达到92.5%,多种路面综合检测准确率为75.2%.本文提出的LaneSegNet车道线检测方法分割精确度和推理速度优于其他对比模型,且具有更强的适应性和鲁棒性. 相似文献
13.
电动车上路必须佩戴安全头盔已成为交管部门的强制性规定.为了能自动检测出电动车骑行者的头盔佩戴情况,提出一种基于改进的YOLOv5m模型的头盔与车牌检测方法,在检测出骑行者未佩戴头盔的同时还能检测出电动车车牌.模型使用自建电动车骑行者头盔与车牌检测数据集进行训练,用DIOU损失函数代替GIOU损失函数,DIOU_NMS代替加权NMS,增强模型对密集骑行场景的识别能力.在Backone部位与预测中小目标的Neck部位加入ECA注意力机制,使得模型对中小目标的识别率有所提高;用K-means算法对锚框尺寸重新进行聚类.最后,改进Mosaic数据增强方式.实验结果表明:改进的 YOLOv5m 电动车骑行者头盔与车牌检测模型的 mAP 为 92.7%,较原 YOLOv5m 模型提高 2.15个百分点,较 YOLOv4-tiny、Faster RCNN 模型分别提高 5.7个百分点与 6.9个百分点.改进后的 YOLOv5m 模型能有效提高对头盔与车牌的识别率. 相似文献
14.
为了提高目标检测的准确率,提出一种基于注意力机制和多层次特征融合的图像目标检测算法。该算法在Cascade R-CNN模型的基础上,以RseNet50为主干网络,通过嵌入简单的注意力模块(SAM)来提高网络的判别能力;其次,利用深度可分离卷积改进特征金字塔网络(FPN),设计了多层次特征融合模块(MFFM),对多尺度特征进行融合,以丰富特征图的信息量,并对不同层次的特征图赋予相应的权重以平衡不同尺度的特征信息;最后,结合目标检测方法中的区域建议网络(RPN)结构获取目标的候选区域进行分类和回归处理,确定检测目标的位置和类别。实验结果表明,相较于Cascade R-CNN目标检测算法,该算法的检测精度提升了约2.0%。 相似文献
15.
针对玉米田间环境中,对幼苗与杂草的检测存在实时性差以及精度不足的问题,将玉米幼苗及常见的四种伴生杂草作为研究对象,提出一种基于改进YOLOv5s的玉米田间杂草检测方法?以YOLOv5s为基础模型,提出一种DCA注意力模块并嵌入特征提取网络的C3结构中,来强化模型的特征表达能力?在损失函数的计算部分引入EIOU损失函数来衡量模型训练过程中的定位损失,优化模型的收敛速度和定位精度?实验表明,改进的YOLOv5s模型在玉米与伴生杂草数据集上mAP@0.5达到95.7%,mAP@0.5:0.95为81.9%,每秒检测帧数为61帧,满足检测精度以及实时性的要求? 相似文献
16.
针对边缘设备计算和存储能力差的问题,本文对传统YOLOv5模型中用于特征提取的主干网络CSPDarkNet53进行轻量化处理,提出了一种轻量化MPE-YOLOv5手势识别算法,以实现模型在低功耗边缘设备上的部署;针对轻量化模型提取特征较少而导致的难以识别大尺度变换目标和微小目标问题,对M-YOLOv5网络设计添加有效通道注意力机制(efficient channel attention, ECA),以缓解因特征通道减少而导致的高层特征信息丢失的问题;同时增加针对微小目标的检测层,提高对微小目标手势的敏感度;并选用EIoU作为预测锚框的损失函数,以提高模型的定位精度。本文在自制数据集和NUS-Ⅱ公共数据集上验证了MPE-YOLOv5算法有效性,并将MPE-YOLOv5算法与轻量化后的M-YOLOv5算法和原始的YOLOv5算法在自制数据集上进行了对比实验。实验结果表明,改进算法的模型参数量、模型大小和计算复杂度分别是原算法的21.16%、25.33%和27.33%,平均精度可达97.2%;与轻量化模型M-YOLOv5相比,MPE-YOLOv5能够在保持原来效率的同时,使平均精度提升8.7... 相似文献
17.
基于视觉图像的船舶目标检测中由于图像背景复杂,无关干扰较多,导致船舶目标检测的难度增大。并且多类别船舶检测数据集现有数量较少且存在样本不均衡的问题使得船舶目标检测性能较低。针对复杂背景干扰检测,本文通过引入SimAM注意力机制对YOLOv3模型进行改进,利用该机制加强船舶目标在提取特征中的权重并抑制背景干扰权重,从而提升模型检测性能;同时,采用强实时数据增强以改善样本尺度分布不均衡的问题,结合迁移学习提升在样本数量受限情况下的船舶检测精度。提取特征的可视化结果显示改进模型对无关背景特征干扰进行了抑制,增强了模型对于船舶特征的提取能力。在SeaShips数据集上,提出的改进模型在不引入额外可学习参数的情况下mAP.5、mAP.75分别达到了96.93%、71.49%,检测速度达到了66 frame/s,在检测精度与运行效率方面保持了均衡。与Saliency-aware CNN、eYOLOv3相比更有效地优化了目标特征,使得mAP.5分别提高了9.53%、9.19%。改进模型在新加坡海事数据集上在船舶类型目标检测的mAP.5达到了81.81%,验证了模型具有较好的泛化能力。 相似文献
18.
针对农业采摘机器人在采摘过程中面临果实重叠、果实遮挡和果实体积小难以识别等一系列问题,提出一种改进YOLOv7网络对番茄果实进行目标检测。首先在YOLOv7网络结构中增加SimAM注意力模块和CA注意力模块,提高网络特征提取能力;其次结合特征融合网络的张量拼接操作与加权特征金字塔,提高特征融合能力;再用Soft-NMS算法代替NMS算法,增加网络对重叠区域的检测能力;最后将CIOU Loss替换成EIOU Loss,优化网络性能。实验结果表明,改进后的 YOLOv7网络 mAP值可达 96.7%,准确率为 96.2%,召回率为 99.0%,满足网络对番茄检测精度的要求。 相似文献