首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The miscibility of a triblock copolymer poly(ethylene oxide)-poly(dimethylsiloxane)-poly(ethylene oxide) with syndiotactic and isotactic poly(methylmethacrylate) wasstudied. Although isotactic poly(methyl methacrylate) (PMMA) was miscible with poly(ethylene oxide) (PEO) in the pure state, it was immiscible with the PEO end blocks in the copolymer. In comparison, the syndiotactic poly(methyl methacrylate) (sPMMA) was miscible with the PEO blocks as indicated by melting point depression, decrease in crystallinity, and slower rate of spherulite growth of PEO. When blends of the triblock copolymer were cooled to low temperatures, the poly(dimethylsiloxane) (PDMS) middle block which resided in the interlamellar region of PEO spherulites also crystallized; the development of PDMS crystals was clearly suppressed at high sPMMA contents.On leave from Union Chemical Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan  相似文献   

2.
The ternary blends of poly(methyl methacrylate)/poly(vinyl pyrrolidone)/poly(ethylene oxide), PMMA/PVP/PEO, were prepared by melting process, using a Haake plastograph, and nuclear magnetic resonance spectroscopy (NMR) was used as a methodology to characterize the molecular mobility of blend components, because NMR has several techniques that allow us to evaluate polymeric materials in different time scales. The NMR results showed that the blends were miscible on a molecular level. The values of proton lattice relaxation time in the rotating frame (T1ρH) indicate that the ternary blend interaction did not reduce the intermolecular distance, because it is dipole–dipole. The molecular motion of each component, even in the miscible amorphous phase and the addition of PEO, has a definitive effect on the PMMA molecular mobility. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1492–1495, 2006  相似文献   

3.
Mian Wang  Suat Hong Goh 《Carbon》2006,44(4):613-617
We have studied the dynamic mechanical behavior of poly(methyl methacrylate) (PMMA)/acidified multiwalled carbon nanotube (MWNT) composites compatibilized with amine-terminated poly(ethylene oxide) (PEO-NH2). PEO-NH2 is ionically associated with acidified MWNTs via ionic interaction as shown by XPS and FTIR. The miscibility between PEO and PMMA improves the interfacial adhesion between polymer matrix and MWNTs, leading to an increase in the storage modulus values of the composites. The effects of PEO-NH2 on storage modulus and glass transition temperature are discussed.  相似文献   

4.
The deformation behavior of miscible amorphous/amorphous PMMA/PEO poly(methyl methacrylate)/poly(ethylene oxide) blends was compared with that of pure PMMA. Small-angle neutron scattering experiments were performed on labeled systems made of PEO + D-PMMA + HPMMA. Characteristic molecular parameters such as radius of gyration, Rg, molecular weight, Mw, and interaction parameter, X, were extracted from the coherent scattering cross sections, Molecular anisotropy was measured on the solid state coextruded samples, and the observed drawing efficiency is compared with, the results of shrinkage tests. In the case of PMMA/PEO blends, anomalous scattering behavior precludes any quantitative Interpretation of the scattering patterns, but revealed important structural changes upon drawing, namely a deformation-induced phase separation.  相似文献   

5.
Inverse gas chromatography (IGC) has been used to investigate thermodynamic miscibility of a molten poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) blend. Toluene, benzene, and chloroform have been employed as probes in pure and mixed stationary phases of these polymers. Experimental measurements have been taken over a narrow range of temperatures because of the high PMMA glass transition temperature as well as the degradation of the PEO. The interaction parameter χ23 determined at 150°C is slightly negative and dependent on the interacting probe, as has been also noted in previous chromatographic studies on polymer-polymer miscibility. The last section is devoted to a model calculation, using Flory's equation of state theory. Different χ23-concentration curves have been simulated, with the interaction energy parameter X23 as an adjustable parameter.  相似文献   

6.
The miscibility of poly(vinyl chloride)/atactic poly(methyl methacrylate (PVC/a-PMMA) blends was investigated by nonradiative energy transfer fluorescence spectroscopy using naphthalene-labeled PVC (PVC-N) with anthracene-labeled PMMA (PMMA-A), or anthracene-labeled PVC (PVC-A) with carbazole-labeled PMMA (PMMA-C). The two sets of results indicate an increase in energy transfer efficiency, corresponding to an increase in blend miscibility, as the PVC concentration increases and, more importantly, demonstrate that the same information about blend miscibility can be obtained using different donor-acceptor chromophore pairs and by changing the polymer to which the donor or the acceptor is attached. The effect of the tacticity of PMMA on its miscibility with PVC was also investigated using PMMA-C and PVC-A labeled polymers. The results confirm that PVC/a-PMMA blends are more miscible than PVC/i-PMMA blends over a large range of compositions.  相似文献   

7.
Amorphous poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA) blend films in extremely constrained states are meta-stable and phase separation of fractal-like branched patterns happens in them due to heterogeneously nucleated PEO crystallization by diffusion-limited aggregation. The crystalline branches are viewed flat-on with PEO chains oriented normal to the substrate surface, upon increasing PMMA content the branch width remains invariant but thickness increases. It is revealed that PMMA imposes different effects on PEO crystallization, i.e. the length and thickness of branches, depending on the film composition.  相似文献   

8.
The blends of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) are prepared in the form of thin films from solution casting. The Fourier transform infrared spectra of the blends are recorded in the spectral range 400–4000 cm?1. The spectra are analysed using various recent techniques of vibrational spectroscopy. It is concluded that upon blending PEO takes preferentially a planar zig-zag structure. Furthermore the intermolecular interactions between the molecules of PEO and PMMA in blends are very weak and their compatibility as blends is more ‘physical’ than ‘chemical’. Further, on the basis of the atomic charges transferred from model molecules it is seen that the blending is preferred with isotactic PMMA when compared to syndiotactic PMMA.  相似文献   

9.
Summary Steady-state photocurrent in poly(N-vinylcarbazole)(PVCz) (26,48 wt%)/poly(methyl methacrylate)(PMMA) blends is for the first time measured. The PVCz(26,48 wt%)/PMMA blends showed almost the same carrier-generation efficiencies at electric fields higher than 1 × 105 V · cm−1. The results are explained by high miscibility of the PVCz(26,48 wt%)/PMMA blends, suggesting the existence of PVCz chains in continous PMMA-rich phase in the phase-separated structure. The miscibility is also evaluated by means of excimer fluorescence of PVCz in these blends and fluorescence microscopy. Received: 26 December 2000/Revised version: 16 January 2001/Accepted: 19 January 2001  相似文献   

10.
The results of the miscibility between the chemically similar polymers poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) published so far show inconsistent statements concerning miscibility. The problems may be due to differences in molecular weights, tacticity, and preparation methods of the polymers. This investigation was carried out by using either chloroform or tetrahydrofuran (THF) as solvent to prepare the blends, because to our knowledge, nobody has reported any tacticity effect of PMMA on the miscibility with PVAc. Therefore, in this article, different tactic PMMAs were used to mix with PVAc and their miscibility was studied calorimetrically. The results showed little effect of solvent and tacticity. PMMA and PVAc were determined to be almost completely immiscible because of the observation of two Tg's. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 35–39, 2004  相似文献   

11.
Poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) blends were prepared by casting from either chloroform or benzene solvents. After casting from solvents, all samples used in this study were preheated to 100°C and held for 10 min. Then, the solvent effect on the crystallization behavior and thermodynamic properties were studied by differential scanning calorimeter (DSC). Also, the morphology of spherulite of casting film was studied by polarized optical microscope. From the DSC and polarizing optical microscopy (POM) results, it was found that PEO/PMMA was miscible in the molten state no matter which casting solvent was used. However, the crystallization of PEO in the chloroform‐cast blend was more easily suppressed than it was in the benzene‐cast blend. Relatively, the chloroform‐cast blend showed the greater melting‐point depressing of PEO crystals. Also, the spherulite of chloroform‐cast film showed a coarser birefringence. It was supposed that the chloroform‐cast blend had more homogeneous morphology. It is fair to say that polymer blends, cast from solvent, are not necessarily in equilibrium. However, the benzene‐cast blends still were not in equilibrium even after preheating at 100°C for 10 min. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1627–1636, 2000  相似文献   

12.
DSC and optical microscopy were used to determine the miscibility and crystallinity of blends of poly(ethylene oxide) (PEO) with poly(4-vinylphenol-co-2-hydroxyethyl methacrylate) (PVPh-HEM). A single glass transition temperature was observed for all blends, indicating miscibility. A progressive decrease in the degree of crystallinity and in the size of the PEO spherullites is observed, as PVPh-HEM is added. FTIR was used to probe the intermolecular specific interactions of the blends and the miscibility of the blend is mainly attributed to PVPh-HEM/PEO intermolecular interactions via hydrogen bonding.  相似文献   

13.
Blends of amorphous and crystalline polylactides (PDLA and PLLA) with poly(methyl methacrylate) (PMMA) and poly(methyl acrylate) (PMA) have been prepared. Thermal behaviour and miscibility of these blends along the entire composition interval were studied by differential scanning calorimetry (d.s.c.). The results were compared with those obtained by dynamic mechanical analysis (DMTA). Only one Tg was found in PDLA/PMA and PDLA/PMMA blends, indicating a high degree of miscibility in both systems. Nevertheless, the PDLA/PMMA blend presented enlargements of the Tg width at high PMMA contents. In this case, additional evidence of complete miscibility was obtained by studying the evolution of the enthalpic recovery peaks which appear after different thermal annealing treatments. When the polylactide used was semicrystalline (PLLA), once the thermal history of the blends had been destroyed, crystallization of PLLA was disturbed in both blends PLLA/PMMA and PLLA/PMA, but in a rather different fashion: in the first case crystallization was almost prevented while in the second one it was favoured. This behaviour was explained in terms of the effect of the higher stiffness as indicated by the value of Tg for PMMA compared to that for PMA.  相似文献   

14.
The miscibility of high molecular weight poly(l-lactide) PLLA with high molecular weight poly(ethylene oxide) PEO was studied by differential scanning calorimetry. All blends containing up to 50 weight% PEO showed single glass transition temperatures. The PLLA and PEO melting temperatures were found to decrease on blending, the equilibrium melting points of PLLA in these blends decreased with increasing PEO fractions. These results suggest the miscibility of PLLA and PEO in the amorphous phase. Mechanical properties of blends with up to 20 weight% PEO were also studied. Changes in mechanical properties were small in blends with less than 10 weight% PEO. At higher PEO concentrations the materials became very flexible, an elongation at break of more than 500% was observed for a blend with 20 weight% PEO. Hydrolytic degradation up to 30 days of the blends showed only a small variation in tensile strength at PEO concentrations less than 15 weight%. As a result of the increased hydrophilicity, however, the blends swelled. Mass loss upon degradation was attributed to partial dissolution of the PEO fraction and to an increased rate of degradation of the PLLA fraction. Significant differences in degradation behaviour between PLLA/PEO blends and (PLLA/PEO/PLLA) triblock-copolymers were observed.  相似文献   

15.
《Polymer》1987,28(2):183-188
Crystallization during cooling of a poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA) blend has been studied using differential scanning calorimetry. Five different cooling rates Vr have been used (namely 10, 5, 2.5, 1.25 and 0.625°C min−1). The presence of PMMA for a given Vr reduces the overall PEO crystallization rate. This effect can be ascribed to reduction of the mobility of the crystallizable chains due to the presence of the amorphous component. It was found that in quasi-static conditions at lower Vr, when nucleation and growth processes are determined by a thermal mechanism alone, the experimental data for the pure PEO and the PEO/PMMA 9010 and 8020 blends agree quite well with the theoretical results obtained using the zero-order approximation of Ziabicki's theory. At higher Vr, in the case of the blends, athermal nucleation cannot be neglected, and then the same approximation does not fit the experimental results. The experimental data analysed showed no agreement with Ozawa's theoretical predictions.  相似文献   

16.
It can be concluded from the work of Schurer et al.10 that poly(vinyl chloride) (PVC) is more miscible with syndiotactic than with isotactic poly(methyl methacrylate) (PMMA). By choosing different molar masses for the various tactic forms of PMMA it is possible to obtain blends with PVC with similar phase behaviour, i.e. in all cases a cloud-point curve with a minimum in the vicinity of 190°C. In this way a more quantitative statement about the influence of the tacticity of PMMA on its miscibility with PVC can be made. One of the principal differences between syndiotactic or atactic PMMA and isotactic PMMA is the higher flexibility of the latter. Using Flory's equation of state theory it will be shown that the effect of this difference is large enough to explain the difference in phase behaviour observed. Heats of mixing of low molar mass analogues were also measured and found to be negative.  相似文献   

17.
The miscibility and crystallization behavior of poly(ethylene oxide)/poly(vinyl alcohol) (PEO/PVA) blends were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and polarizing optical microscopy. Because the glass‐transition temperature of PVA was near the melting point of PEO crystalline, an uncommon DSC procedure was used to determine the glass‐transition temperature of the PVA‐rich phase. From the DSC and DMA results, two glass‐transition temperatures, which corresponded to the PEO‐rich phase and the PVA‐rich phase, were observed. It was an important criterion to indicate that a blend was immiscible. It was also found that the preparation method of samples influenced the morphology and crystallization behaviors of PEO/PVA blends. The domain size of the disperse phase (PVA‐rich) for the solution‐cast blends was much larger than that for the coprecipitated blends. The crystallinity, spherulitic morphology, and isothermal crystallization behavior of PEO in the solution‐cast blends were similar to those of the neat PEO. On the contrary, these properties in the coprecipitated blends were different from those of the neat PEO. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1562–1568, 2004  相似文献   

18.
Cloud-point curves of blends of poly(methyl methacrylate) (PMMA) with a series of oligodiols based on a bisphenol A nucleus and short branches of poly(ethylene oxide) or poly(propylene oxide) (BPA-EO or BPA-PO), and with PEO and PPO oligomers, were obtained using a light transmission device. Experimental results were fitted with the Flory-Huggins model using an interaction parameter depending on both temperature and composition. For PMMA/PEO and PMMA/PPO blends, the miscibility increased when increasing the size of the diol, due to the significant decrease in the entropic and enthalpic terms contributing to the interaction parameter. This reflected the decrease in the self-association of solvent molecules and in the contribution of terminal OH groups to the mismatching of solubility parameters. For PMMA/BPA-EO blends, a decrease of the entropic contribution to the interaction parameter when increasing the size of the oligodiol was also found. However, the effect was counterbalanced by the opposite contribution of combinatorial terms leading to cloud-point curves located in approximately the same temperature range. For PMMA/BPA-PO blends, the interaction parameter exhibited a very low value. In this case, the effect of solvent size was much more important on combinatorial terms than on the interaction parameter, leading to an increase in miscibility when decreasing the oligodiol size. For short BPA-PO oligodiols no phase separation was observed. The entropic contribution of the interaction parameter exhibited an inverse relationship with the size of the oligodiols, independent of the nature of the chains bearing the hydroxyls and the type of OH groups (primary or secondary). This indicates that the degree of self-association of solvent molecules through their OH terminal groups, was mainly determined by their relative sizes.  相似文献   

19.
Summary This paper describes the synthesis and characterization of amphipathic diblock copolymers of poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO). The synthesis involved the coupling of acyl chloride-terminated PMMA block with methoxy poly(ethylene oxide) (MPEO). Carboxylic acid chloride-terminated PMMA was generated by treating with thionyl chloride the parent carboxylic PMMA, which was prepared by free radical polymerization of methyl methacrylate (MMA) using benzoyl peroxide (BPO) as the initiator and -mercaptopropionic acid (MPA) as the chain transfer agent. The proposed mechanism of MMA polymerization is in good agreement with the experimental results which indicate that as a side reaction nonfunctional (aromatic) counterpart is produced in a small quantity. The coupling of the acyl chloride-terminated PMMA with MPEO was quantitative.  相似文献   

20.
The miscibility of high molecular weight poly( -lactide) PLLA with high molecular weight poly(ethylene oxide) PEO was studied by differential scanning calorimetry. All blends containing up to 50 weight% PEO showed single glass transition temperatures. The PLLA and PEO melting temperatures were found to decrease on blending, the equilibrium melting points of PLLA in these blends decreased with increasing PEO fractions. These results suggest the miscibility of PLLA and PEO in the amorphous phase. Mechanical properties of blends with up to 20 weight% PEO were also studied. Changes in mechanical properties were small in blends with less than 10 weight% PEO. At higher PEO concentrations the materials became very flexible, an elongation at break of more than 500% was observed for a blend with 20 weight% PEO. Hydrolytic degradation up to 30 days of the blends showed only a small variation in tensile strength at PEO concentrations less than 15 weight%. As a result of the increased hydrophilicity, however, the blends swelled. Mass loss upon degradation was attributed to partial dissolution of the PEO fraction and to an increased rate of degradation of the PLLA fraction. Significant differences in degradation behaviour between PLLA/PEO blends and (PLLA/PEO/PLLA) triblock-copolymers were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号