首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过光学显微镜(OM)、X射线衍射仪(XRD)、扫描电镜(SEM)和力学试验,研究了510℃下固溶处理20h所得Mg-15Gd-2Zn-0.6Zr合金的组织结构及力学性能。结果表明,铸态Mg-15Gd-2Zn-0.6Zr合金主要由树枝状α-Mg基体以及分布于枝晶间的(Mg,Zn)_3Gd共晶相组成;固溶处理后,合金相组成未发生变化,而(Mg,Zn)_3Gd相形貌由连续网状转变为不连续岛状,体积分数由19%下降为9%;固溶态合金中未观察到长周期堆垛有序结构的形成。拉伸条件下,固溶态Mg-15Gd-2Zn-0.6Zr合金屈服强度比铸态略有下降,但抗拉强度和延伸率均有较大提高,其屈服强度、抗拉强度和延伸率依次为176 MPa、277 MPa和12.8%,表现出优良的综合力学性能;压缩条件下,铸态和固溶态Mg-15Gd-2Zn-0.6Zr合金的力学性能差异较小,且均优于拉伸条件下的力学性能。  相似文献   

2.
刘建鑫  陈君  陈晓亚 《稀土》2022,(1):75-81
通过光学显微镜、扫描电镜、X射线衍射仪和维氏硬度计等仪器观察和分析了不同热处理工艺对Mg-4Nd-2Gd-0.5Zr合金组织和性能的影响。结果表明,铸态Mg-4Nd-2Gd-0.5Zr合金的组织主要由α-Mg基体和第二相(Mg12Nd相和Mg5Gd相)组成,经过热处理后合金组织中的相没有发生改变。铸态合金中的第二相主要以沿晶界分布的不连续网状和在晶粒内部的颗粒状形式存在,经固溶处理大部分第二相融入基体,后经时效处理又重新析出,此时合金中的析出相细小且弥散分布。Mg-4Nd-2Gd-0.5Zr合金的最佳热处理工艺为525℃固溶8 h,然后在225℃时效8 h,此时,合金的硬度达到峰值,为42.9 HV。  相似文献   

3.
为了探究Al元素在不同冷却速度下对Mg-9Gd合金组织细化效果及其对后续固溶处理的影响,利用铁模和铜模重力铸造制备了铸态Mg-9Gd-0.8Al合金,之后进行10~50 h的固溶处理。采用OM、SEM、TEM、EDS及XRD等方法研究了冷却速度对Mg-9Gd-0.8Al合金凝固和固溶行为及组织力学性能的影响。结果表明,铁模和铜模制备的铸态Mg-9Gd-0.8Al合金组织均由α-Mg基体、花瓣状(Mg, Al)3Gd相、细条状Mg5Gd相和方块状Al2Gd相组成。铜模相比于铁模冷却速度加快,制备的合金基体晶粒和第二相显著细化,第二相体积分数总量增长幅度达56.1%。2种模具制备的合金固溶10 h后,Mg5Gd相溶解、(Mg, Al)3Gd相部分溶解、高熔点Al2Gd相无变化,晶粒内析出层片状(Mg, Al)2Gd新相,第二相总量趋于相等。固溶50 h后,(Mg, Al)2Gd层片相回溶,残余(Mg, Al)  相似文献   

4.
为了探究Al元素在不同冷却速度下对Mg-9Gd合金组织细化效果及其对后续固溶处理的影响,利用铁模和铜模重力铸造制备了铸态Mg-9Gd-0.8Al合金,之后进行10~50 h的固溶处理。采用OM、SEM、TEM、EDS及XRD等方法研究了冷却速度对Mg-9Gd-0.8Al合金凝固和固溶行为及组织力学性能的影响。结果表明,铁模和铜模制备的铸态Mg-9Gd-0.8Al合金组织均由α-Mg基体、花瓣状(Mg, Al)3Gd相、细条状Mg5Gd相和方块状Al2Gd相组成。铜模相比于铁模冷却速度加快,制备的合金基体晶粒和第二相显著细化,第二相体积分数总量增长幅度达56.1%。2种模具制备的合金固溶10 h后,Mg5Gd相溶解、(Mg, Al)3Gd相部分溶解、高熔点Al2Gd相无变化,晶粒内析出层片状(Mg, Al)2Gd新相,第二相总量趋于相等。固溶50 h后,(Mg, Al)2Gd层片相回溶,残余(Mg, Al)3Gd相发生熔断呈颗粒状,铜模制备的合金第二相颗粒比铁模的更细小。细晶强化和第二相强化使铜模制备的铸态合金性能较铁模制备的合金性能大幅提高,固溶10 h后合金屈服强度提升,伸长率基本不变。固溶处理50 h后,固溶强化、细晶强化和细小颗粒的第二相强化使铜模制备的固溶50 h态合金获得最优性能,屈服强度、抗拉强度和伸长率分别为141 MPa、234 MPa和22.4%。  相似文献   

5.
采用X射线衍射仪、光学显微镜、扫描电镜、能谱仪和电子拉伸试验机,研究了不同Sn含量对Mg-5Gd-3Y-0.5Zr合金显微组织、力学性能以及拉伸断口形貌的影响。结果表明,铸态Mg-5Gd-3Y-0.5Zr合金主要由基体α-Mg、Mg5Gd和Mg24Y5相组成,Sn的添加能够细化合金组织,在合金中生成新相Sn3Y5,促进合金中第二相的析出。Mg-5Gd-3Y-0.5Zr-0.5Sn合金中第二相呈现出分布均匀的颗粒状,Mg-5Gd-3Y-0.5Zr-1.0Sn合金中部分区域出现了长条状第二相,Mg-5Gd-3Y-0.5Zr-1.5Sn合金中部分区域出现了方块状第二相。在本文研究范围内,随着Sn含量的增加,合金的抗拉强度、伸长率以及布氏硬度都呈现出先上升后下降的趋势。Sn含量为0.5%时,铸态合金综合性能最好,此时合金的抗拉强度、伸长率以及布氏硬度分别为177 MPa、6.87%和57.47 HBW,与无Sn合金相比分别提高了5.36%、12.25%和11.96%。  相似文献   

6.
Mg-10Gd-4.8Y-0.6Zr合金在520℃下的固溶处理行为   总被引:1,自引:0,他引:1  
采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、显微硬度测试、热分析、能谱分析以及X射线衍射(XRD)等手段,研究Mg-10Gd-4.8Y-0.6Zr合金铸态和520℃固溶处理不同时间后的显微组织以及显微硬度分布.结果表明:Mg-10Gd-4.8Y-0.6Zr合金经520℃/16 h固溶处理后,铸态时的...  相似文献   

7.
通过金相显微镜、扫描电镜、透射电镜以及万能拉力试验机等,研究了Mg-7Gd-2.5Nd-0.5Zr(%,质量分数,下同)合金在固溶+人工时效情况下,显微组织和力学性能的变化。结果表明,铸态合金组织由α-Mg基体和粗大共晶相(α-Mg+Mg_5Gd+Mg_(12)Nd)组成,热处理后,合金组织中的颗粒方块相显著增多且长大,沿着晶界分布;合金组织析出的纳米尺寸颗粒方块相可有效强化合金性能。时效态合金的β'相形态类似纺锤形,彼此相互连接,夹角为120°,且有周期性。不同状态合金的室温抗拉强度分别为:铸态177.9 MPa、固溶态191.4 MPa和时效态247.1 MPa。  相似文献   

8.
为提高WE系列生物镁合金的力学性能,采用重力铸造法制备了Mg-5Y-2Nd-1Gd-0.5Zr (质量分数,WE53)镁合金,并对铸态合金进行了固溶处理(T4),固溶+时效处理(T6)和挤压加工.利用光学显微镜和扫描电子显微镜观察了合金的显微组织,并利用拉伸试验机和显微硬度计测试了合金室温力学性能.结果表明,铸态合金屈服强度为130 MPa,伸长率为10.2%,T6处理可显著提高铸态合金的强度和硬度,降低合金的伸长率;挤压变形明显提高合金的强度和硬度,伸长率与铸态相当.通过适当的热处理和挤压变形可显著改善WE53镁合金的力学性能.  相似文献   

9.
通过X射线衍射、扫描电镜、金相组织分析和拉伸性能测试等方法,研究了Al对Mg-5Gd-3Y铸态合金组织和性能的影响。结果表明,Mg-5Gd-3Y铸态合金的组织由α-Mg基体和共晶相Mg5Gd和Mg24Y5组成。加入Al元素后,有新相Al2Gd、Al2Y析出,对合金的晶粒起到细化作用,有效提高了Mg-5Gd-3Y铸态合金的力学性能。  相似文献   

10.
采用球磨法制备Mg-4Y-2Nd-1Gd-0.4Zr合金颗粒,将其作为多元微合金化材料,通过搅拌铸造法制备Mg-14Li-Al-xRE (Y, Nd, Gd, Zr)合金。采用金相显微镜(OM)、扫描电镜(SEM)、 X射线衍射仪(XRD)及电子万能试验机等,研究了RE (Y, Nd, Gd, Zr)添加量对Mg-14Li-Al合金的显微组织、力学性能及时效行为的影响。结果表明,与基体合金Mg-14Li-Al相比,多元微合金化后在合金中形成了大量针状、块状的Al_2Y相和少量棒状的Al_3Nd相,很少出现富Gd的第二相, AlLi软化相减少;随着RE含量的增加,晶界处的Al-RE相数量密度逐渐增加,晶粒得到显著细化,添加1.6%RE(质量分数)时铸态合金平均晶粒尺寸达到最小,细化率约76.6%,挤压变形后合金的晶粒得到进一步细化,达到10μm左右;随着RE含量的增加,力学性能明显提升,添加0.8%RE时,铸态合金的抗拉强度相对于Mg-14Li-Al基体提高了57%,继续增加RE含量,强度基本保持稳定,挤压变形后合金的强度和塑形得到进一步提高;室温条件下,多元微合金化后形成的Al-RE相对Mg-14Li-Al基体时效行为产生了明显的影响,合金在各个时期的硬度均显著上升,过时效软化程度有所降低。  相似文献   

11.
以Al-9.2Zn-2.0Mg-1.8Cu合金为基础合金,共设计了3种化学成分的合金,采用金相显微镜(OM)、扫描电镜(SEM)、X射线衍射(XRD)、差热分析(DSC)等手段,同时结合Pandat热力学计算,研究了Zn和Mg元素对半连续铸造高Zn含量Al-Zn-Mg-Cu合金铸态和均匀化组织的影响。结果表明:合金铸态组织中第二相主要包括非平衡共晶(AlZnMgCu)四元相、大量细小的短棒状MgZn_2相以及很少量的富Cu相;提高Zn和Mg元素的含量均会导致合金铸态组织中非平衡共晶相数量及非平衡共晶相厚度的增加,且在高Zn含量Al-Zn-Mg-Cu系合金中Mg元素影响更大,这与热力学计算结果基本一致。各合金经过470℃/24 h均匀化处理后,Al-9.2Zn-2.0Mg-1.8Cu合金回溶完全,Mg和Zn元素含量更高的合金回溶不充分,组织中仍存在一定数量的(AlZnMgCu)四元相,其中,在高Zn含量Al-Zn-Mg-Cu合金中Mg元素的增加尤其不利于均匀化的进行。  相似文献   

12.
通过OM、SEM和XRD实验观察并研究了Mg-9Gd-2Y-Sm-0.5Zr(%质量分数)合金的微观组织和析出相,并采用腐蚀失重实验对合金的耐蚀性能进行了测试。结果表明,Mg-9Gd-2Y-Sm-0.5Zr合金微观组织主要由沿晶界分布的枝状共晶相和少量分布在晶内的小颗粒状相组成;析出相有α-Mg,Mg5Gd和Mg24Y5相。实验研究了该合金在不同浓度的NaCl溶液中的耐蚀性能,结果表明该合金腐蚀程度随着NaCl浓度的增加而增加,腐蚀产物以Mg(OH)2为主,腐蚀速率较低,耐蚀性能较好。  相似文献   

13.
《铝加工》2017,(1)
对不同冷却速率的铸态Mg-9Zn-2Gd-1Y镁合金进行了恒温恒定压缩速率的热模拟压缩试验,并对样品进行了XRD物相分析以及金相和扫描电子显微(SEM)观察。结果表明合金中的第二相为脆性相,在压缩过程中会被破碎,而快速冷却的合金在压缩变形过程中会形成非均匀变形带,导致组织变形不均匀,原有的层片状共晶第二相被变形带破碎为亚微米尺度的颗粒。分析表明该合金的枝晶和共晶结构容易导致非均匀变形。  相似文献   

14.
《稀土》2021,(2)
采用OM、SEM、TEM、EBSD、XRD和万能材料试验机等手段研究了铸态、退火态、热变形+时效态、固溶态等四种状态下Mg-10Gd稀土镁合金的微观组织和力学性能。结果表明,铸态合金组织由α-Mg基体和晶界处的不连续Mg_5Gd共晶相组成;退火态合金组织为α-Mg固溶体;热变形+时效态合金主要由动态再结晶组织和弥散分布在晶粒内部的β′-Mg_7Gd相组成;固溶态合金组织为α-Mg固溶体,β′相完全溶解。由于β′相的析出强化作用,四种状态合金中热变形+时效态合金具有最高的抗拉强度为371MPa。铸态合金的断口处伴随着晶界共晶相的破裂,其主要断裂形式为准解理断裂。热变形+时效态合金拉伸断裂形式为撕裂棱和微孔聚合复合作用形成的准解理断裂。退火态和固溶态的断裂形式是以撕裂棱为主的准解理断裂。  相似文献   

15.
为了研究Mg-Zn-Gd系合金中的相组成,采用热力学计算软件Pandat和Mg热力学数据库,外推计算了Mg-Gd-Zn系合金富镁角的水平截面图与垂直截面图,用Mg-6Gd-2Zn和Mg-6Gd-4Zn两种合金对该外推相图进行验证和修正,并在200℃下对该铸态合金保温480 h进行平衡处理,用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)及差热分析(DSC)对该平衡处理后的合金的平衡相组成及凝固过程的相变温度点进行分析。通过计算相图可知Mg-Gd-Zn系合金富镁角的平衡组织为α-Mg,Mg5Gd,MgZn三种平衡相;通过XRD可知该系合金中主要有α-Mg,Mg5Gd,MgZn 3种平衡相;通过DSC可知,Mg-6Gd-2Zn与Mg-6Gd-4Zn合金的液相线、固相线及过饱和固溶体析出相的相变温度的实验测定值与计算值误差分别为1.92%,4.99%,3.68%和0.05%,3.67%,0.16%,说明计算相图得到的相与XRD,DSC实验结果测得的相相符,证明此数据库外延计算相图可以使用;通过SEM照片及EDS分析可知Mg-Zn-Gd合金晶界处有板块状的Mg5(Gd,Zn)化合物与颗粒状Mg(Gd,Zn)化合物;通过计算得到的Mg-Gd-Zn系平衡相图的平衡组织为α-Mg+Mg5Gd+MgZn,而修正后的平衡组织为α-Mg+Mg5(Gd,Zn)+Mg(Gd,Zn)。  相似文献   

16.
采用金相光学显微镜(OM),扫描电镜(SEM),能谱仪(EDS)以及X射线衍射(XRD)等手段,研究了不同Gd含量(1%,2%,3%,原子分数)与不同热处理状态(铸态,固溶态,时效态)对Mg-Gd-Zr合金显微组织和力学性能的影响。结果表明:铸态组织中,Gd元素富集在晶界,随Gd含量增加,共晶组织增多,并逐渐呈网状分布,合金的晶粒逐渐变小。经过535℃,24 h固溶处理,共晶组织分解,残留相主要为富Gd的方块相,数量随Gd含量升高增加,晶粒尺寸比铸态组织长大。再经过220℃,24 h时效处理,合金中析出第二相,晶粒尺寸与固溶态差别不大。合金的抗拉强度,屈服强度和硬度(R_m,R_(p0.2),HB)随Gd含量增加呈上升趋势,断后伸长率随Gd含量升高呈降低趋势。经过535℃,24 h固溶处理,消除了铸造应力,且使合金晶粒长大,降低了合金强度。时效处理后,合金中析出第二相,合金强度升高,且Gd含量越高析出第二相越多,强化效果越明显。拉伸断裂后,铸态合金呈解理断裂,固溶态合金呈穿晶断裂,时效态合金呈沿晶断裂。  相似文献   

17.
将Mg-7Gd-5Y-1Nd-x Zn-0.5Zr (x=1, 1.5, 2)铸态合金在510℃下均匀化热处理48 h,随炉冷却至480℃并分别保温0/1/8 h,利用扫描电镜(SEM)探究热处理后的组织形貌;对热处理后的合金样品进行一系列热压缩试验,并使用电子背散射衍射(EBSD)技术对热压缩后合金的动态再结晶情况进行研究。结果表明:炉冷+预析出热处理过程中,晶粒内部有片层状长周期堆垛有序(LPSO)相析出;晶界、晶界块状LPSO相及晶内片层状LPSO相均对动态再结晶的发生有促进作用,但其促进作用依次减弱,形核位置的优先级依次为晶界、块状LPSO相界面、片层状LPSO相界面。晶内片层状LPSO相的存在能够为动态再结晶提供潜在的形核质点,使动态再结晶晶粒能够从原始晶粒内部开始生长。晶内动态再结晶在片层状LPSO相界面处形核并长大,同时片层状LPSO相抑制了动态再结晶晶粒沿垂直片层方向的生长,使其只能在片层中间生长拉长,不再呈现等轴晶状。  相似文献   

18.
通过添加少量的Zn元素制备了(%,质量分数)Mg-2.0Mn-x Zn(x=0,0.5,1.0,1.5,2.0)合金。对合金进行挤压变形,并利用光学显微镜(OM)、扫描电镜(SEM)、能谱分析(EDS)等手段,研究了少量的Zn元素对Mg-Mn合金组织及力学性能的影响。实验结果表明,Mg-2.0Mn-x Zn合金的铸态及挤压态组织中主要含有的第二相为颗粒状的α-Mn相,Zn元素均匀固溶于Mg基体中。少量添加的Zn元素可以显著细化铸态Mg-Mn-Zn镁合金的晶粒尺寸。随着Zn含量增加,挤压态合金中动态再结晶区域增加,混晶组织呈减少趋势。少量添加Zn元素对挤压态Mg-2.0Mn合金的强度及塑性都有明显的改善作用,尤其是合金的屈服强度最高增加42%,延伸率增加57%。随着Zn添加量增加,合金强度的增加趋势减弱。SEM观察显示挤压态Mg-2.0Mn-x Zn合金拉伸试样的断口形貌以韧窝及解理台阶为主,呈现韧性断裂与准解理断裂的混合断口形貌。  相似文献   

19.
采用不同的固溶温度对挤压态Mg-13Al-6Zn-4Cu(质量分数,%)合金进行热处理,然后在(150℃/10 h)条件下进行时效处理,通过金相显微镜、扫描电镜及能谱分析、维氏硬度与极化曲线测试,研究固溶温度对挤压态合金显微组织、硬度与腐蚀性能的影响。结果表明:固溶处理促进晶界处的β-Mg_(17)Al_(12)相充分溶入α-Mg基体中。提高固溶温度使基体晶粒再结晶长大,逐渐缩小T-MgAlCuZn相心部的Cu元素富集区,改变β析出相的形态和分布,促进层片状β相在α-Mg晶界析出,从而提高时效态合金的硬度。但固溶温度超过420℃时,合金晶粒粗化并发生过烧。固溶温度升高导致合金腐蚀电位负移,腐蚀电流增大,腐蚀速率加快。  相似文献   

20.
利用等离子体发射光谱仪(ICP)、光学显微镜(OM)、扫描电子显微镜(SEM)等分析手段研究了Mg-x Zn-y Gd(x=1~3,y=1~3)合金铸造态、挤压态的化学成分和微观组织演变,并测试其室温拉伸力学性能。研究结果表明:随着Gd含量的增加,铸态组织显著细化,枝状晶间距减小,其组分相Mg-Zn-Gd三元相面积分数逐渐增多,Mg Zn2相逐渐减少直至消失,第二相从晶界处呈连续网状分布转变成晶界断续和晶内均匀分布。挤压态组织得到细化,挤压过程发生了明显的动态再结晶,平均晶粒尺寸从Mg-3Zn合金的30μm降到Mg-2Zn-1Gd合金的10μm。第二相沿挤压方向趋于带状分布,部分弥散分布于晶内,成棒状或块状的Mg Zn Gd三元相,尺寸约为1~3μm。挤压态Mg-x Zn-y Gd合金的抗拉强度σ_b从Mg-3Zn的260 MPa提高到300 MPa,延伸率δ从13%提高到25%,屈服强度变化不大,σ_b和δ提高幅度分别为15.4%,92%。挤压态的显微硬度由Mg-3Zn的HV 52.1提高到Mg-3Zn-2Gd的HV 70.4,挤压态Mg-x Zn-y Gd合金室温拉伸断口呈现典型的韧性断裂特征,应力在第二相粒子处集中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号