首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BOG压缩机是LNG接收站处理BOG的核心设备之一,其功能是不断从LNG储罐抽出由于漏热等因素产生的多余BOG,以维持LNG储罐压力稳定。同时BOG压缩机是LNG接收站电能消耗较高的设备的之一,文中以江苏LNG接收站的BOG压缩机为例,重点分析在一级压缩和二级压缩之间加以高压L N G为介质的级间冷却器之后的功耗及其对接收站运行的影响。  相似文献   

2.
介绍LNG接收站BOG产生原因并运用不同方法计算出各种原因下的BOG产量,以此为基础探讨LNG接收站储罐压力控制的各种方式。通过对比BOG压缩外输、BOG再冷凝外输和BOG通过火炬、安全阀放空几种控制方式的能耗,结合现阶段接收站运行的实际工况,分析出使用BOG再冷凝低压外输工艺为目前工况下的最佳控制方式。  相似文献   

3.
LNG接收站的功能是接收、储存和气化LNG,并通过管网向下游用户供气。由于在卸船时LNG进人储罐导致罐内LNG体积变化会产生大量的蒸发气(BOG)。为了维持储罐压力的稳定,必须处理掉过量的BOG。本文以某LNG项目为例,探讨BOG压缩机处理能力的计算方法以及选型。  相似文献   

4.
许京栋 《山东化工》2023,(13):172-174
储罐中储存的LNG由于自然蒸发等原因,会在储罐上层形成蒸发气(BOG),这部分气体会影响到储罐的压力,此时就需要BOG压缩机来调控,让储罐的压力处在一个安全的范围之内,保证LNG接收站运行的安全与稳定。BOG压缩机是整个LNG气化外输的流程中至关重要的设备,通过总结,论述了往复式BOG压缩机的结构原理和维护维修两大方面。  相似文献   

5.
LNG低温储罐压力安全系统设计   总被引:2,自引:1,他引:1  
刘浩  周永春 《化工设计》2007,17(1):7-10,16
介绍LNG低温储罐压力安全系统设计的基本思路,并针对不同情况讨论LNG低温储罐超压时BOG气体泄放量和产生负压时空气补充量的计算,为LNG低温储罐的安全阀、真空阀及紧急泄放系统提供设计基础。  相似文献   

6.
熊晓俊  何婷  林文胜 《化工学报》2018,69(Z2):425-430
液化天然气(LNG)接收站运行过程中会产生一定量的蒸发气(BOG),目前常用火炬、压缩、再冷凝三种工艺来处理BOG。由于BOG温度较低,压缩工艺中普遍采用的是低温压缩机。然而低温压缩机造价十分昂贵,极大地降低了LNG接收站的经济效益。为此,提出了一种利用常温压缩机处理BOG的工艺。该工艺利用压缩机出口的高温BOG来加热压缩机进口处的低温BOG,一方面提高了压缩机进口温度,使得常温压缩机代替低温压缩机成为可能;另一方面,降低了压缩机出口BOG的温度,减少了BOG再冷凝所需冷量。借助HYSYS软件对低温压缩和常温压缩工艺进行了模拟分析,结果表明对于小型LNG接收站,常温压缩机工艺更有优势。  相似文献   

7.
LNG接收站BOG压缩机处理能力计算及选型研究   总被引:3,自引:0,他引:3  
吕俊  张昌维  傅皓 《化工设计》2011,21(1):14-16,30,1
LNG接收站的功能是接收、储存和气化LNG,并通过管网向下游用户供气,由于在卸船时LNG进入储罐导致罐内LNG体积变化,以及环境温度、大气压变化、罐内泵电机运转等外界能量的输入,会产生大量的蒸发气(BOG).为了维持储罐压力的稳定,必须处理掉过量的BOG.BOG压缩机作为BOG处理的核心设备,在LNG储运中起到重要作用...  相似文献   

8.
为了提高LNG(液化天然气)接收站BOG(蒸发气)处理工艺的节能效果,改善工艺对工况波动的适应性,从LNG站无外输、BOG产生量过大这2种特殊工况入手,对LNG接收站BOG处理工艺进行改进,增设压缩BOG储罐来储存无法进行再冷凝处理和需要排空燃烧的BOG气体。在此基础上进行了工艺模拟,并分析了LNG储存量、外输压力、压缩比对改进后工艺节能效果的影响。模拟结果表明,改进后工艺较改进前节能约为10. 8%,改进后工艺节省能耗随LNG储存量增加而增加,随外输压力增加而增加,随压缩比减小而增加。  相似文献   

9.
通过从LNG接收站的实际情况出发,梳理了BOG的产生因素,主要包括热量入侵、储罐压力、初始充满率、LNG组分以及储罐进出料,并从以上角度入手,论述分析了多种可降低BOG产生量的预防措施,以期节约资源,降低成本,提高经济效益。  相似文献   

10.
BOG压缩机是低温往复压缩机的一种,是液化天然气接收站的"心脏",正是通过它不断地把BOG压缩后冷凝成液体来控制低温储罐的压力和温度,从而保证LNG储罐的正常安全运行。由于BOG(蒸发气)温度低至-163~-40℃,对承受交变载荷的压缩机零部件材料在低温状态下的冷脆断裂、冷缩变形、低温密封、低温隔热、绝热保冷等一直是国内外研究分析的重要课题。  相似文献   

11.
大型LNG储罐预冷动态模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
大型常压LNG储罐在接收站中占有很高的投资份额,是接收站关键的储存容器,在启用时对调试技术的要求较高,其中,储罐的冷却是最重要的预备环节。基于气液两相容积节点原理,建立喷淋LNG蒸发计算模型,搭建大型LNG储罐预冷过程动态仿真平台,以160000 m3大型LNG地上全容储罐为例,计算其在预冷过程中所需要的时间以及预冷所用LNG总量,得到了预冷过程中储罐压力、BOG产生量以及储罐内部温度的动态变化,为设计优化液化天然气储罐预冷策略提供了理论依据。  相似文献   

12.
以大连液化天然气(LNG)接收站为例,利用Aspen软件对LNG接收站蒸发气(BOG)处理工艺流程进行分析。提出了BOG再冷凝液化与直接压缩混合使用的运行方案,并且在再冷凝工艺流程中增加预冷装置。分析结果表明:当接收站能够稳定提供足够量LNG时,系统优先选择再冷凝工艺路线,否则自动切换至高压压缩工艺路线,并直接输送至管网。该混合使用方案能够解决因储罐及管网内BOG压力过高而放空所造成的能源浪费问题。再冷凝工艺流程中,加装预冷装置之后,压缩机较加装之前节约能耗37.4%。  相似文献   

13.
BOG蒸发率是大型LNG低温储罐非常重要的性能指标,BOG蒸发率的大小将直接影响储罐运营期间的能耗和安全风险。本文通过理论分析LNG低温储罐结构不同部位冷损失和热传导,对保冷结构设计重点和薄弱部位进行分析,并采取相应技术手段和措施,以减少BOG蒸发量和蒸发率。同时,文中通过对目前国内已投入运营的3个LNG项目储罐保冷结构进行对比分析,在设计差异的基础上,从设计条件、材料比选等方面,对项目保冷结构进行计算和说明,其计算结果能够满足BOG蒸发率在控制指标内。  相似文献   

14.
贺志福 《广州化工》2012,40(18):113-114,163
LNG低温储罐的保冷性能直接影响到BOG压缩机的能耗,本文通过探讨LNG低温储罐的绝热性能,详细分析影响LNG低温储罐自然漏热的各种因素,并通过计算方法求得以满罐为基准、在最热气象条件下的蒸发气的量,来验证宁夏哈纳斯液化天然气有限公司LNG储罐的绝热性能。  相似文献   

15.
能源安全是一国经济安全的重要保障,随着国际能源尤其是石油市场的波动加剧,液化天然气(LNG)的需求日趋旺盛。本文介绍了一种通用的BOG(Boil Off Gas,低温储罐内自然蒸发的气体)产生量的静态计算模型和储备站工况分析,结合实例进行了计算;根据BOG产生量的情况,提出了4种处理工艺。既可以节能也可以满足环保要求。  相似文献   

16.
近年来随着国内LNG接收站的建设运营和储运系统的完善,如何在使用LNG过程中减少损耗和提高LNG蒸发气(BOG)的回收利用率成为学术和工程界的关注热点之一。本文通过给定大型LNG储备站,计算各种工况下BOG的生成量,分析其特点,为以后的LNG储备站项目BOG回收利用提供参考。通过计算分析表明,在大型储备站设计中不同气源条件对应的BOG最大产生量工况不同,储备站正常运行(无气相外输)过程中储罐热输入、管线热输入产生的BOG量为稳态量,约占BOG生成总量的71.7%~84.1%,装、卸船和槽车置换产生的BOG量为动态量,约占BOG生成总量的15.9%~28.3%。BOG回收利用液化规模可设为贫富LNG产生BOG量的平均值。  相似文献   

17.
LNG作为一种清洁高效能源,正越来越受到我国的重视,未来将成为主要应用的能源之一。LNG温度在-162℃左右,需储存于具有良好的绝热保冷性能的LNG储罐之中,因为对于低温储罐,热量会通过传导、对流、辐射等方式传入储罐,导致LNG的汽化产生BOG,使储罐温度和压力升高。选择绝热性能优良的储罐可以更好地储存LNG。本文重点介绍了两种LNG储罐的保冷原理,分析了其绝热保冷性能。  相似文献   

18.
以国内某LNG接收站气源及设备操作参数为依托,利用Aspen Hysys软件建立对LNG接收站BOG处理工艺流程模型。通过控制再冷凝器气相出口流率,改变LNG流量得到BOG完全再冷凝所需最小LNG量。同时,利用单因素分析法,模拟分析BOG流量、LNG低压泵出口压力、BOG压缩机出口压力及气源气质对BOG再冷凝工艺的影响,可以看出,再冷凝工艺系统所需LNG量与BOG流量呈正线性变化关系;在一定压力范围内,再冷凝工艺系统所需LNG量随BOG压缩机出口压力增加而减小;超出一定压力后,再冷凝工艺系统所需LNG量随BOG压缩机出口压力增加而增加;再冷凝工艺系统所需LNG量随LNG低压泵出口压力增加而增加;甲烷含量越高的LNG,其BOG中甲烷含量越少,冷凝单位质量BOG所用的LNG用量越少。  相似文献   

19.
张宁  徐雅  沈惬  张冲  邵斌  孙大明 《化工学报》2015,66(Z2):166-171
对比分析了LNG(液化天然气)加气站3种BOG(蒸发气)回收方式,指出采用大冷量斯特林制冷机的BOG再液化回收技术,不仅解决了传统回收方式对天然气管网和CNG(压缩天然气)站的依赖,而且实现了液化天然气储运过程中的"零排放",经济和社会效益显著。在此基础上,探讨了单级整体式斯特林制冷机的制冷能力以及BOG的液化量,试验和计算结果表明:单级斯特林制冷机的制冷量达到1 kW@77 K和2 kW@110 K,每月BOG液化能力≥8 t,满足了我国小型LNG站BOG回收过程对冷量的需求。  相似文献   

20.
近年来,为推动我国LNG储存调峰能力建设和中国海油东南沿海天然气储备系统建设,确保国家天然气供应安全,中国海油旗下新建LNG接收站均在不同程度下考虑了LNG仓储转运功能的规划,海南LNG接收站项目在考虑仓储转运中心的装船返输功能后,在设计阶段对接收站BOG产生量的进行了重新计算。通过对比原设计与考虑返输后设计的BOG产生量计算,分析了装船返输对LNG接收站BOG生产量的影响因素。结论认为,影响LNG接收站BOG产生量的因素有多种,在考虑返输装船的LNG接收站中对BOG量计算产生影响最大的两个因素为返输时的装船速率与LNG船舱的压力,因此在LNG接收站的装船返输操作中,如何控制这两个参数对控制BOG的产生,避免压力波动,使接收站稳定运行是至关重要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号