首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为实现我国南方离子型稀土矿的无铵浸析,以生物表面活性剂-皂角苷为浸矿剂,通过淋洗实验探讨了皂角苷浓度、溶液pH、原矿粒径、固液比对稀土淋洗效果的影响,结果表明:在原矿粒径为0.25 mm,皂角苷浓度50 g/L、pH=5.5和固液比(g/mL, 下同)1:15条件下,振荡24 h后,皂角苷对稀土的淋洗效率可达76.78 %.而在柱淋洗实验中,累积淋洗效率为43.16 %,仅不到硫酸铵的1/2;原因在于皂角苷对稀土的淋洗效率会受溶液和原矿的性质、流速等因素的影响,导致淋洗反应迟缓,拖尾期长.   相似文献   

2.
本文对南方离子型稀土矿开展了新型无铵绿色环保浸矿剂探索试验,研究了浸矿剂浓度、液固比和pH值对硫酸铵、硫酸镁和SAK(一种含K和Al的复盐) 3种浸矿剂浸矿的影响,并综合比较了该3种浸矿剂的浸矿效果。结果表明,RE和Fe、Si、Al、Ca杂质元素浸出率随着浸矿剂浓度和液固比增加呈现先增后趋于平缓趋势,随着pH值增大而呈现递减趋势;在浸矿剂浓度2%、液固比0.6∶1、硫酸铵和硫酸镁pH值5.0、SAK pH值3.0的条件下,进行稀土矿中金属浸出试验,Al浸出率大小顺序为硫酸铵>硫酸镁>SAK;Fe、Si和Ca则为SAK>硫酸铵>硫酸镁;相比硫酸镁,硫酸铵和SAK浸矿速度较大,洗水用量较少。从无氨氮绿色环保、浸矿效果方面考虑,确定SAK为新型浸矿剂,最优浸矿工艺参数为浸矿剂浓度2%,液固比0.6∶1,pH值3.0,此条件下稀土浸出率为96.93%,Al浸出率为13.78%。  相似文献   

3.
采用55%硝酸溶解稀土伴生磷矿,得到硝酸溶解液,然后用离子交换法分离提取硝解液中稀土元素。采用单因素法研究了离子交换时间、淋洗剂pH值、EDTA浓度及硝解液中钙离子等因素对稀土提取的影响。结果表明,最佳工艺条件为:离子交换50min,淋洗剂pH值9.0、EDTA浓度0.020mol/L、淋洗50min;在此条件下树脂对硝解液中稀土一次吸附率最高达到50%,稀土一次洗出率最高达到94%以上。硝解液经浓缩冷冻除钙后,稀土吸附率明显提高。  相似文献   

4.
离子型稀土矿山氨氮污染及其治理研究进展   总被引:1,自引:0,他引:1  
离子型稀土矿山氨氮污染治理是矿山环境保护的重要组成部分。本文对离子型稀土矿山氨氮污染及其治理现状进行了综述,总结了氨氮对土壤、水体的危害,赋存形式及其去除方法。根据氨氮在土壤及水体的赋存形式,对已经开采的离子型稀土矿山,采取土壤淋洗技术去除氨氮;对正在开采的离子型稀土矿山,重点论述了注液工程与收液工程的优化,无铵化浸矿以及矿山智能监控系统。  相似文献   

5.
采用规格为Φ6 cm×20 cm的有机玻璃柱柱浸方式,开展了离子型稀土矿新型无氨氮浸取剂的遴选及柱浸工艺优化研究,重点考察了浸取剂类型、浸出剂质量分数、浸出剂用量、浸出p H值对稀土浸出率的影响。研究结果表明,遴选出的硫酸镁作为离子型稀土矿新型无氨氮浸取剂,稀土浸出的效果较好,并确定了较优柱浸工艺条件:浸出剂硫酸镁质量分数为2%,浸出剂用量为液固体积质量比1.0∶1.0,浸出p H值为5.0,水洗用量为液固体积质量比1∶1,浸出的温度为室温。在上述条件下,进行3次平行实验,稀土平均浸出率达到98.40%。在此基础上,采用规格为Ф11 cm×100 cm的有机玻璃柱进行扩大柱浸实验,扩大实验结果表明,该浸出工艺稳定,稀土浸出率稳定,达到99%以上。  相似文献   

6.
针对龙南某矿山的半风化离子型稀土进行浸取试验研究.矿样中全相品位为 0.11 %,其中离子相稀土含量为 0.083 7 %.考察了浸取剂种类,浸取剂浓度,淋洗液固比以及尾水液固比对浸取的影响,其最佳柱浸浸取条件为:HT-13 浓度 2 %,淋洗液固比(指质量比,下同)为 0.4:1,尾液水液固比为0.6:1, 在此条件下稀土离子相浸出率为 98.06 %. 在放大试验中 HT-13 浸出液中稀土离子浓度为1.14 g/L,铝浓度为 10.8 mg/L,铁浓度为 7.8 mg/L,且 HT-13 可以循环使用.   相似文献   

7.
针对离子型稀土原地浸出工艺现有氨氮污染问题,考察镁盐、铝盐等非铵浸出剂对稀土浸出过程的影响。以赣州稀土矿样为研究对象,选择硫酸镁与硫酸铵通过柱浸的方式进行对比试验,同时考察铝盐与铵盐、镁盐联合浸出效果的影响,测定浸出液成分,分析不同浸出剂浸出效果的差异。结果表明:相同质量分数的硫酸铵和硫酸镁浸出效率相当,硫酸铵可达91.37%,硫酸镁可达89.22%;添加铝盐后的稀土浸出率仅76%左右,铝盐的添加不能促进稀土浸出效率的提升;铵盐柱浸顶水洗涤后铵根离子可降低至76 mg/L,镁盐柱浸顶水洗涤后镁离子可降低至27 mg/L,镁离子比铵根离子更容易洗涤去除。硫酸镁作为浸出剂能够从根本上解决离子型稀土矿山氨氮污染问题。  相似文献   

8.
《稀土》2015,(1)
选用柠檬酸盐作为风化壳淋积型稀土矿的浸取剂,并将柠檬酸盐对稀土的浸出效果与硫酸盐和氯化盐等浸取剂进行了对比,考察了柠檬酸铵作为浸取剂时的最佳浸取工艺。实验结果表明,柠檬酸铵作为风化壳淋积型稀土矿浸取剂时,柠檬酸根离子与稀土离子的配位作用,能促进矿石稀土离子交换,提高稀土回收率,降低浸矿剂铵盐的用量,减小氨氮废水的污染。采用柱浸回收稀土的最佳工艺条件为:柠檬酸铵浓度3 g/L,液固比2∶1,浸取剂pH 6.0~8.0,淋洗流速0.5 min/m L,稀土浸出率可达90.01%。  相似文献   

9.
针对离子型稀土矿区浸矿过程导致的土壤氨氮、重金属复合污染问题,研究硫酸铵残留对土壤重金属迁移转化和形态的影响机制。通过土柱淋滤和室内土壤培养考察不同浓度浸矿剂输入土壤后,氨氮、重金属Zn、Cu和Cr的形态和迁移性变化。实验结果表明,与无浸矿剂淋滤对照组相比较,浸矿剂在重金属污染土壤中主要以氨氮形式存在,硝态氮占比低。在培养期间,浸矿剂硫酸铵淋滤降低了土壤pH值和土壤阳离子交换量(CEC),重金属活性增加,当浸矿剂淋滤浓度为5%时,弱酸态Cr、Cu、Zn比例分别提高8.29%、5.21%、4.53%。研究结果表明:硫酸铵加剧了土壤酸化,提高重金属迁移性,促进重金属形态从生物不可利用态向可利用态转化。  相似文献   

10.
以赣州某稀土公司浸矿所得稀土母液经NH4HCO3除杂沉淀后的上清液为处理对象,主要研究纳滤技术对原液中稀土离子的浓缩效率,以及对NH3-N分离回收情况,以期能够为工业化分离应用提供借鉴.实验表明,当原液中稀土离子浓度为142.9 mg/L,氨氮浓度为346.1 mg/L时,在操作压力为0.8 MPa,进水pH值为6.49,运行温度为25 ℃的条件下,浓缩液侧稀土离子截留率达到95 %以上,Ca2+、Mg2+、Mn2+、Zn2+等杂质离子截留率能够达到75 %~90 %,透过液侧氨氮浓度为原浓度的60 %左右,有一定的浓缩效果;6.0 L的稀土母液沉淀上清液浓缩至0.6 L时,RE3+浓度升高至1 242.0 mg/L,浓缩了近8.69倍.   相似文献   

11.
为筛选处理高盐含氨氮矿冶废水的耐盐微生物,从赣南离子型稀土矿山集液沟区域采集样品,利用选择性培养基富集培养分离耐盐异养硝化细菌,并考察碳源、pH、盐度等因素对其脱氮性能的影响.结果表明,分离得到一株耐盐异养硝化细菌X1,经16S rDNA鉴定为肠杆菌属Enterobacter sp. X1,确定该菌适宜的脱氮条件为:以蔗糖作为碳源,pH值为5,盐度≤15 %.菌株X1的NH4+-N去除率可达到60 %以上.研究结果可为高盐含氨氮矿冶废水的微生物处理提供菌株和数据参考.   相似文献   

12.
治理离子吸附型稀土矿山氨氮污染的首要任务是探清其在矿区土壤中的吸附解吸规律。以化学纯高岭土为吸附剂,硫酸铵为吸附质,研究pH在3、4、5、6条件下氨氮在高岭土表面的等温吸附实验得出,pH越大,氨氮在高岭土表面的单位吸附量越高,其最大吸附量可达9μmol/g;连续提取氨氮解吸实验得到物理吸附态、离子交换吸附态及化学吸附态氨氮最大吸附量分别为0.85μmol/g、3.7μmol/g和3.4μmol/g。根据各吸附态氨氮在黏土矿物表面的吸附解吸规律,在此基础上研究推断,造成离子吸附型稀土矿山氨氮长期性污染的主要氮源是离子交换态氨氮,在原地浸矿结束注完顶水后,再注入高岭土悬浊液,使残留在矿体中的离子交换态氨氮转化成化学吸附态氨氮,则可以很好地治理尾矿山氨氮污染。  相似文献   

13.
离子型稀土冶炼废水处理工艺研究   总被引:1,自引:0,他引:1  
离子型稀土冶炼企业采用清洁生产工艺后,排放的废水酸度高、含盐量高,磷、重金属离子、CODCr、氨氮等超标。研究了从离子型稀土冶炼废水中去除总磷、重金属离子,提出去除有机相—脱磷—去除重金属离子—分级氧化—石英砂过滤工艺流程。试验结果表明:在用石灰乳调节废水pH为9.5、加入20mg/L聚合氯化铝条件下,废水中总磷质量浓度可降至1mg/L以下,总磷去除率达88.2%;脱磷后的废水中依次投加50mg/L硫化钠、50mg/L有机螯合剂,反应0.5h后絮凝沉降,清液中总铅质量浓度为0.17mg/L,总铅去除率达99%。处理后的出水水质符合《稀土工业污染物排放标准》(GB26451-2011)。  相似文献   

14.
为实现无铵富集稀土,以复合钠盐为沉淀剂,对铝盐体系离子型稀土矿浸出液中稀土进行富集。考察了pH对稀土浸出液除铝效果的影响,研究了不同沉淀剂、沉淀剂配比及用量、终点pH、反应温度、反应时间、陈化时间对稀土沉淀率的影响。结果表明,在初始稀土浓度0.014 64 mol/L、铝浓度0.54 g/L、初始pH=3.89、反应温度25 ℃、反应时间60 min的条件下,除铝终点pH=4.93时,残余铝浓度为13.02 mg/L,稀土损失为1.2%;当复合沉淀剂用量为0.7倍理论量的70%NaHCO3+30%Na2CO3、沉淀终点pH=6.72、反应时间60 min、反应温度25 ℃、陈化时间40 min时,稀土沉淀率高达99.68%,灼烧后氧化稀土总量为96.48%,铝含量为0.52%。  相似文献   

15.
采用模拟土柱淋滤实验研究酸雨条件下浸矿土壤和尾矿土壤中氮化物的迁移.选取有机玻璃管为试验柱,模拟酸雨淋滤液pH为5.4~5.6,测量两类土壤中NH4+-N、NO3--N、有效氮含量,实验结果表明:稀土土壤对铵态氮有一定截留作用,铵态氮流失是导致矿区土壤及周边水环境污染的主要原因;铵态氮在两类土壤的含量随着淋洗量增加而逐渐减少;硝态氮在两类土壤的含量随着淋洗量增加呈现先减少至最低再有所回升,且受土壤pH和土壤埋深影响;有效氮在两类土壤中的迁移特征与铵态氮相似. 实验研究为有效控制赣南稀土矿土壤污染和水体污染提供理论基础.   相似文献   

16.
采用柱浸法研究硫酸铵浸取离子型稀土矿过程中水、稀土、硫酸铵及其他杂质离子的浸出规律. 研究表明,离子型稀土矿矿土对水有较强的吸附能力,浸矿后,矿土的含水率由17.74 %增加到33.7 %.浸出过程中,稀土浸出率可达99.98 %,杂质中Al3+浸出量比较大,SiO32-浸出量较小,而Fe3+几乎不浸出,各离子的浸出先后顺序为:SiO32-、RE3+、Al3+、Fe3+,杂质Al3+的浸出略滞后于稀土的浸出. Al3+、Fe3+浓度达到峰值时,pH值最低,随着浸矿剂和顶水的加入,浸出液的pH值开始上升,直至达到硫酸铵溶液的pH值和顶水的pH值.   相似文献   

17.
针对离子型稀土矿原地浸矿中的再吸附问题,进行了实验室条件试验,探讨了离子型稀土矿再吸附存在的条件,提出避免离子型稀土矿浸出再吸附的措施。结果表明稀土母液与稀土矿相互接触越充分,再吸附效果就越好;母液稀土离子浓度升高或母液液固比增大,会使稀土矿再吸附量增大;母液中阳离子离子交换能力大于稀土离子,会抑制稀土矿再吸附,交换能力小于稀土离子,会促进稀土矿再吸附;pH值升高再吸附量先增大后减小。同时,为避免浸出过程再吸附,应该选择合适的浸取剂浓度与液固比。  相似文献   

18.
研究了南方离子型稀土分解液在萃取槽内用环烷酸连续去除铁、铝杂质,考察了分解液初始pH、杂质初始质量浓度、有机相皂化度和萃取级数对杂质去除效果的影响。结果表明:控制分解液初始pH为1~2、Al 3+初始质量浓度≤2g/L、有机相皂化度0.10mol/L及萃取级数20级,可获得Fe3+质量浓度30mg/L、Al 3+质量浓度300mg/L的合格料液,所得料液可进入分离工序进一步分离单一稀土;负载有机相经盐酸反萃取后回收其中的少量稀土,确保稀土收率。该工艺简单、连续、除杂率高,已成功实现产业化。  相似文献   

19.
离子型稀土原地浸矿地下水氨氮污染模拟与预测   总被引:1,自引:0,他引:1  
在查明稀土矿山水文地质条件和开采方案确定的基础上,通过对标准矿块室内淋溶试验和现场试验确定污染源强,利用FEFLOW数值模拟软件对地下水氨氮进行数值模拟,模拟得出4组地下水氨氮浓度最大预测值,第1组位于矿块边缘为1076.22 mg/L,第2组位于超标区范围内的水井为49.18 mg/L,第3组位于外围的未超标区域内的水井为0.51 mg/L,第4组位于距离矿块最近的河流边缘点为1400.80 mg/L.并以图形输出方式定量表现出稀土矿开采过程中及开采完后地下水氨氮变化趋势及其影响范围.研究成果可为赣南离子型稀土原地浸矿制定合理的开采方案,保护矿区地下水环境提供参考依据,从而实现生态环境与经济的协调发展.  相似文献   

20.
《稀土》2016,(1)
针对白云鄂博稀土尾矿矿物组成复杂、利用率低的问题,采用浮选工艺从尾矿中提取高品位稀土精矿。采用单因素实验方法,重点考察了药剂制度(p H值、抑制剂用量、捕收剂用量)及物理因素(磨矿粒度、矿浆浓度、浮选机调浆转速和浮选转速、充气量)对浮选指标的综合影响。单因素试验结果表明,稀土尾矿浮选的最佳工艺条件为:p H值8.1,抑制剂用量1000 g/t,捕收剂用量1000 g/t,磨矿粒度为-74μm占88.53%,矿浆浓度30%,调浆转速2500 r/min,浮选转速2000 r/min,充气量0.2 m3/h;此条件下经一次粗选可获得稀土品位30.85%、回收率为72.13%的稀土粗精矿。基于此优化条件,采用"1粗2精1扫、中矿顺序返回"的闭路实验流程,最终可获得稀土品位为51.07%、回收率为62.99%的稀土精矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号