首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The complex [UO2(OH)(CO(NH2)2)3]2(ClO4)2 (I) was synthesized. A single crystal X-ray diffraction study showed that compound I crystallizes in the triclinic system with the unit cell parameters a = 7.1410(2), b = 10.1097(2), c = 11.0240(4) Å, α = 104.648(1)°, β = 103.088(1)°, γ = 108.549(1)°, space group \(P\bar 1\), Z = 1, R = 0.0193. The uranium-containing structural units of the crystals are binuclear groups [UO2(OH)· (CO(NH2)2)3] 2 2+ belonging to crystal-chemical group AM2M 3 1 [A = UO 2 2+ , M2 = OH?, M1 = CO(NH2)2] of uranyl complexes. The crystal-chemical analysis of nonvalent interactions using the method of molecular Voronoi-Dirichlet polyhedra was performed, and the IR spectra of crystals of I were analyzed.  相似文献   

2.
The crystal structure of a previously unknown compound KNa3[(UO2)5O6(SO4)] [space group Pbca, a = 13.2855(15), b = 13.7258(18), c = 19.712(2) Å, V = 3594.6(7) Å3] was solved by direct methods and refined to R 1 = 0.055 for 3022 reflections with |F hkl | ≥ 4σ |F hkl |. In the structure there are five sym-metrically nonequivalent uranyl cations. They are linked by cationcation (CC) interactions to form a pentamer whose central cation is U(2)O 2 2+ forming two three-centered CC bonds. All the uranyl ions are coordinated in the equatorial plane by five O atoms, which leads to the formation of pentagonal bipyramids sharing common edges to form layers parallel to the (100) plane. The sulfate tetrahedron links the uranyl layers into a 3D framework. The K+ and Na+ cations are arranged in framework voids. A brief review of CC interactions in U(VI) compounds is presented.  相似文献   

3.
Single crystals of [PuO2(NO3)2(TPPO)2] (TPPO = OPPh3) isostructural to the related compounds of uranyl and neptunyl were isolated, and the structure of this complex was determined. Contrary to the complexes [AnO2(TPPO)4](ClO4)2 studied previously, the interatomic distances and volumes of coordination polyhedra of An in these compounds somewhat decrease in the series U-Np-Pu. This difference was attributed to a change in the number of TPPO ligands in the compounds and weakening of their interaction with oxygen atoms of the AnO 2 2+ groups in passing from [AnO2(TPPO)2](ClO4)2 to [AnO2(No3)2(TPPO)2].  相似文献   

4.
Cu2{(UO2)3[(S,Cr)O4]5}(H2O)17 crystals were prepared by evaporation of aqueous solutions. The crystal structure was solved by the direct method and refined to R 1 = 0.064 (wR 2 = 0.177) for 8120 reflections with ¦F hkl¦ 4 ¦F hkl¦. Rhombic system, space group Pbca, a = 18.0586(8), b = 19.9898(9), c = 20.5553(8) Å, V = 7420.2(6) Å3. The structure is based on {(UO2)3[(S,Cr)O4]5}4– anionic layers, formed by combination of UO7 pentagonal bipyramids and TO4 tetrahedra through common vertices. The { (UO2)3 [(S,Cr)O4]5}4– layers are parallel to the (010) plane. The Cu2+ (H2O)6 octahedra and additional water molecules are located in the interplanar space and provide binding of the layers in the structure by hydrogen bonds. Based on the occupancy of tetrahedral positions, more accurate chemical formula of the compound should be written as Cu2{(UO2)3[(S0.804 Cr0.196)O4]5} (H2O)17.Translated from Radiokhimiya, Vol. 46, No. 5, 2004, pp. 408–411.Original Russian Text Copyright © 2004 by Krivovichev, Burns.  相似文献   

5.
The crystal structure of a previously unknown compound [CH3NH3][(UO2)(H2AsO4)3] was solved by direct methods and refined to R 1 = 0.038 for 3041 reflections with |F hkl | >-4σ |F hkl |. The compound crystallizes in the monoclinic system, space group P21/c, a = 8.980(1), b = 21.767(2), c = 7.867(1) Å, β = 115.919(5)°, V = 1383.1(3) Å3, Z = 4. In the structure of the compound, pentagonal bipyramids of uranyl ions, sharing bridging atoms with tetrahedral [H2AsO4]? anions, form strongly corrugated layered complexes [(UO2)(H2AsO4)3]? arranged parallel to the (100) plane. The protonated methylamine molecules [CH3NH3]+ form unidimensional tapelike packings parallel to the c axis and linked by hydrophilic-hydro-phobic interactions. The topology of the layered uranyl arsenate complex [(UO2)(H2AsO4)3]? is unusual for uranyl compounds and was not observed previously. A specific feature of this topology is the presence of monodentate arsenate “branches” arranged within the layer.  相似文献   

6.
KFe H2P2O7)2 is synthesized at 443 K in molten polyphosphoric acids containing K and Fe ions, and its crystal structure is determined: triclinic unit cell with a = 4.9974(6) Å, b = 7.4766(9) Å, c = 7.8185(9) Å, = 82.29(2)°, = 83.37(2)° , = 74.13(2)° ; Z = 1, sp. gr. P . The structure is made up of infinite ribbons formed by corner-shared PO4 tetrahedra and FeO6 octahedra, with the K atoms in between. Neighboring ribbons are linked by hydrogen bonds. The proton conductivity of potassium iron(III) dihydrogen diphosphate is rather low.Translated from Neorganicheskie Materialy, Vol. 41, No. 1, 2005, pp. 74–77. Original Russian Text Copyright © 2005 by Chudinova, Murashova, Ilyukhin, Tarnopolskii, Yaroslavtsev.  相似文献   

7.
Uranyl phosphate (UO2)3(PO4)2·8H2O was synthezied. Its dehydration was studied by X-ray diffraction, IR spectroscopy, and thermal and chemical analysis. The dehydration products were isolated and characterized by X-ray diffraction and IR spectroscopy. Their structural features were determined.  相似文献   

8.
Phase transitions and thermal deformations of - and -Cs2(UO2)2(MoO4)3 were studied by high-temperature X-ray diffraction analysis. In heating of -Cs2(UO2)2(MoO4)3 to 625 ± 25°C, the reconstructive phase transition proceeds. -Cs2(UO2)2(MoO4)3 is stable up to 700 ±25°C. The thermal expansion of both phases is sharply anisotropic: 11 = 10 × 10–6, 22 = 33 × 10–6, 33 = 10 × 10–6, V = 53 × 10–6 deg–1 for -Cs(UO2)2(MoO4)3 and 11 = 13 × 10–6, 33 = 3 × 10–6, V = 31 × 10–6 deg–1 for -Cs2 (UO2)2 (MoO4)3. The anisotropy of thermal expansion is explained by features of the crystal structure of the compounds.Translated from Radiokhimiya, Vol. 46, No. 5, 2004, pp. 405–407.Original Russian Text Copyright © 2004 by Nazarchuk, Krivovichev, Filatov.  相似文献   

9.
The compound (NH4)3[UO2(CH3COO)3]2(NCS) (I) was synthesized and examined by single crystal X-ray diffraction analysis. The compound crystallizes in the rhombic system with the unit cell parameters a = 11.5546(4), b = 18.5548(7), c = 6.7222(3) Å, V = 1441.19(10) Å3, space group P21212, Z = 2, R = 0.0345. The uranium-containing structural units of crystals of I are isolated mononuclear groups [UO2(CH3COO)3]? belonging to crystal-chemical group AB 3 01 (A = UO 2 2+ , B01 = CH3COO?) of uranyl complexes. The specific features of packing of the uranium-containing complexes in the crystal structure are considered.  相似文献   

10.
Thermal deformations of Na6(UO2)2O(MoO4)4 were studied by high-temperature powder X-ray diffraction. The compound crystallizes in the triclinic system, space group Р\(\bar 1\), a = 7.636(7), b = 8.163(6), c = 8.746(4) Å, α = 72.32(9)°, β = 79.36(4)°, γ = 65.79(5)°, V = 472.74(4) Å3. It is stable in the temperature interval 20–700°С. The thermal expansion coefficients (TECs) are α11 = 25.5 × 10–6, α22 = 7.8 × 10–6, and α33 = 1.1 × 10–6 (°C)–1. The orientation of the TEC pattern relative to the crystallographic axes is a33^Z = 45°, a33^X = 122°, a22^Z = 59°, and a22^X = 66°. The anisotropy of the thermal expansion is due to specific features of the crystal structure of the compound.  相似文献   

11.
The electrochemical behavior of graphite in polar solvent-H2SO4 electrolytes is studied in a wide range of H2SO4 concentrations. The results demonstrate that, with decreasing H2SO4 concentration, the charging curves become smoother and shift to higher potentials, the stage index increases, and intercalation compounds are more difficult to obtain. At H2SO4 concentrations of 50% and lower, graphite polarization is accompanied by a significant overoxidation, as evidenced by the anomalously small intercalate layer thicknesses: 7.75–7.85 Å. Anodic polarization of graphite in electrolytes consisting of H2SO4 and a polar solvent (H2O and C2H5OH) follows the same mechanism as in the case of the formation of graphite bisulfate. In going from water to C2H5OH, a less polar solvent, the intercalation threshold increases from 30 to 70% H2SO4. It is shown using a set of characterization techniques that, in the graphite-H2SO4-R (R = H2O, C2H5OH) systems, the solvent is not intercalated into graphite. Stage I–III ternary graphite intercalation compounds (TGICs) are synthesized for the first time in the graphite-H2SO4-C2H5COOH system: stage I TGICs at H2SO4 concentrations above 70%, stage II in the range 30–70% H2SO4, and stage III at H2SO4 concentrations down to 10%. The intercalate layer thickness in the TGICs is 7.94 Å. The mechanism of TGIC formation in this system is shown to differ from those in mixtures of H2SO4 and other organic acids. Thermal analysis in combination with spectroscopic analysis of gaseous products provides clear evidence for intercalation of propionic acid into the TGIC and indicates that the thermal stability of this compound is lower than that of graphite bisulfate.Translated from Neorganicheskie Materialy, Vol. 41, No. 2, 2005, pp. 162–169.Original Russian Text Copyright © 2005 by Shornikova, Sorokina, Maksimova, Avdeev.  相似文献   

12.
The crystal and molecular structures of [TcCl(CO)5] and [TcBr(CO)5] were determined. The compounds crystallize in the rhombic system, space group Pnma; a = 11.6757(18) and 11.9564(18) Å, b = 11.7365(14) and 11.7250(18) Å, c = 6.0407(7) and 6.2020(15) Å, V = 827.77(19) and 869.5(3) Å3, respectively; Z = 4. The structural data for pentacarbonyl halides were compared in the series Mn-Tc-Re and Cl-Br-I. Quantum-chemical calculations of the compounds [TcX(CO)5] (X = F, Cl, Br, I) and of the anion [TcCl3(CO)3]2? were made. A correlation between the geometry, electronic structure, and reactivity of the complexes is considered.  相似文献   

13.
The crystal structure of isostructural Pu(V) and Np(V) acetates of the general composition SrAnO2Ac3 · 3H2O (Ac = CH3COO?) was determined. The structures are based on complex anions [AnO2Ac3]2? and Sr2+ cations combined into a three-dimensional framework with water molecules located in framework cavities. The An(V) atoms are characterized by the hexagonal-bipyramidal oxygen surrounding; the equatorial plane is formed by the O atoms of three acetate groups. The coordination surrounding of the Sr atom is a tetragonal antiprism formed by the O atoms of acetate ions and water molecules. The bond lengths within the coordination sphere decrease in passing from Np(V) to Pu(V): the average An=O and An-O bond lengths are 1.828(5) and 2.549(6) Å for Np and 1.811(4) and 2.530(4) Å for Pu, respectively.  相似文献   

14.
Potassium benzoate C7H5O2K (CAS Registry No. 582-25-2) was synthesized by the method of liquid phase reaction. Chemical and elemental analyses, FTIR, and X-ray powder diffraction (XRD) techniques were applied to characterize the composition and structure of the compound. Low-temperature heat capacities of the compound were measured by a precision automated adiabatic calorimeter over the temperature range from 78 K to 398 K. A polynomial equation of the heat capacities as a function of temperature was fitted by the least-squares method. Smoothed heat capacities and thermodynamic functions of the compound were calculated based on the fitted polynomial. In accordance with Hess’s law, a reasonable thermochemical cycle was designed, and 100 mL of 1 mol · dm−3 NaOH solution was chosen as the calorimetric solvent. The standard molar enthalpies of dissolution for the reactants and products of the supposed reaction in the selected solvent were measured by an isoperibol solution-reaction calorimeter. Finally, the standard molar enthalpy of formation of the title compound C7H5O2K (s) was derived to be -(610.94 ± 0.77) kJ · mol−1.  相似文献   

15.
This paper examines the dissolution behavior of the (111)A, (111)B, (110), and (100) surfaces of CdTe single crystals in aqueous H2O2-HI-C6H8O7 (citric acid) solutions. We have determined the dissolution rate of the crystals as a function of temperature and solution concentration, located the composition regions of polishing and selective etchants, and studied the microstructure and roughness of surfaces polished with optimized etchants. The etching behavior of CdTe is shown to depend on its crystallographic orientation.  相似文献   

16.
Two new U(VI) compounds, [((CH3)2CHNH3)(CH3NH3)][(UO2)2(CrO4)3] (1) and [CH3NH3][(UO2)· (SO4)(OH)] (2), were prepared by combining hydrothermal synthesis with isothermal evaporation. Compound 1 crystallizes in the monoclinic system, space group Р21, a = 9.3335(19), b = 10.641(2), c = 9.436(2) Å, β = 94.040(4)°. Compound 2 crystallizes in the rhombic system, space group Рbca, a = 11.5951(8), b = 9.2848(6), c = 14.5565(9) Å. The structures of the compounds were solved by the direct methods and refined to R1 = 0.041 [for 5565 reflections with Fo > 4σ(Fo)] and 0.033 [for 1792 reflections with Fo > 4σ(Fo)] for 1 and 2, respectively. Single crystal measurements were performed at 296 and 100 K for 1 and 2, respectively. The crystal structure of 1 is based on [(UO2)2(CrO4)3]2– layers, and that of 2, on [(UO2)(SO4)(OH)] layers. Both kinds of layers are constructed in accordance with a common principle and are topologically similar. Protonated isopropylamine and methylamine molecules are arranged between the layers in 1, and protonated methylamine molecules, in 2. Compound 1 is the second known example of a U(VI) compound templated with two different organic molecules simultaneously.  相似文献   

17.
A new metal orthoborate compound, cobalt dinickel orthoborate, CoNi2(BO3)2 has been successfully synthesized for the first time. The title compound was synthesized by thermally-induced solid-state chemical reaction at 900°C between the initial reagents of Co(NO3)2 · 6H2O, Ni(NO3)2 · 6H2O and H3BO3 which were mixed with the mol ratio of 1: 2: 2 respectively. The obtained product was structurally characterized by X-ray powder diffraction technique. It has been found that the CoNi2(BO3)2 crystallizes in the kotoite type and isostructural with the compounds having the chemical formula M3(BO3)2 where M—Mg, Co and Ni. The synthesized compound belongs to the orthorhombic crystal system with the refined unit cell parameters of a = 5.419(9) Å, b = 8.352(0) Å, c = 4.478(8) Å and Z = 2. The space group was determined as Pnmn. Further characterizations by FTIR, elemental analysis and thermal analysis were also performed.  相似文献   

18.
Reactions of vanadium, niobium, and tantalum pentoxides with aluminum nitride have been studied using X-ray diffraction. At temperatures from 1000 to 1600°C, we have identified various V, Nb, and Ta nitrides. The composition of the niobium and tantalum nitrides depends on the reaction temperature. The tendency toward nitride formation becomes stronger in the order V2O5 < Ta2O5 < Nb2O5.  相似文献   

19.
We have measured the photoluminescence and Raman spectra of (Ga2S3)0.95(Sm2O3)0.05 crystals and identified the mechanism of the energy transfer from the host to the rare-earth ion and the vibrational modes of the constituent atoms.  相似文献   

20.
A new Np(V) chromate complex with outer-sphere sodium cations, Na3[NpO2(CrO4)2](H2O)5 (I), was synthesized from aqueous solution. Its composition and structure were determined by single crystal X-ray diffraction. The structure of I is based on anionic chains of the composition [NpO2(CrO4)2] n 3n, running along [010] and forming layers parallel to the (101) plane. The Na+ ions and water molecules of crystallization are arranged between the layers. The coordination polyhedra of the Np atoms (pentagonal bipyramids) are combined pairwise by sharing common equatorial edges formed by two bridging oxygen atoms of bidentate chelate-bridging CrO4 groups. The absorption spectra of I in the IR and visible ranges are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号