首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic structures of the Ga1−xInxNyAs1−y/GaAs compressively strained quantum wells (QW) are investigated using 6×6 k·p Hamiltonian including the heavy hole, light hole and spin–orbit splitting band. The curves of dependence of transition energy on well width and N mole fraction are obtained. The valence subband energy dispersion curves, density of state and TE and TM squared optical transition matrix elements of three possible QW structures for emitting 1.3 μm wavelength are given.  相似文献   

2.
Tertiarybutylarsine (TBA) and teriarybutylphosphine (TBP) are liquid organometallic sources that are a safer alternative to arsine and phosphine. In this work, we have grown high-quality In0.53Ga0.47As/InP quantum wells at a temperature of 590° with TBA and TBP partial pressures of 0.4 and 2.5 Torr, respectively. A low-temperature photoluminescence study indicated optimized column V growth interruption times of 0.5 s for In0.53Ga0.47As wells with InP barriers. Using the optimized growth conditions, we have obtained lattice matched In0.53Ga0.47As/InxGa1-xAsyP1-x single quantum-well lasers emitting at 1.55 μm. Broad-area devices with a length of 3.5 mm exhibit a low threshold current density of 220A/cm2. Broad-area lasers containing four quantum wells had a threshold current density of 300A/cm2 for a 3.0 mm cavity length and CW powers of 40 mW per facet for an as-cleaved 4 × 750 μm device.  相似文献   

3.
Some properties of the In1 − y Ga y As1 − x N x unordered alloys and physical prerequisites of their use in science and technology are considered. The results of studying the intermolecular interaction in the systems under study and the features of their application to the In1 − y Ga y As1 − x N x /GaAs functional hetero-structures are presented.  相似文献   

4.
We have investigated the growth of quaternary In1−xGaxAsyP1−y/InP materials using TBA and TBP in a N2 ambient. This process improves significantly the uniformity of In1−xGaxAs/InP QWs whereas it does not improve the quaternary Q(1.3)/InP uniformity compared to the conventional process utilizing AsH3 and PH3 in H2. The effect on the x and y uniformity for different combinations of the group-V precursors TBA, TBP, PH3, and AsH3 with the carrier gases H2 and N2 is evaluated. Advantages with the TBA/TBP/N2 process are discussed.  相似文献   

5.
The alloy compositions of GaXIn1−XAsyP1−y LPE layers lattice-matched to InP substrates have been determined by electron microprobe analysis. The composition data are well repre-sented by x = 0.40y + 0.067y2. The emission wavelengths of lattice-matched GaXIn1−XAsyP1−y/InP double-heterostructure diode lasers have been measured at 300 and 80 K. The photon energies for laser emission at 300 K are given by hΝ(eV) = 1.307 − 0. 60y + 0.03y2. The emission energies at 80 K are 57 meV higher. This work was sponsored by the Department of the Air Force.  相似文献   

6.
Based on our kinetics models for gas source molecular beam epitaxy of mixed group-V ternary materials, the group-V composition control in InyGa1−yAs1−xPx epilayers has been studied. The P or As composition in InyGa1−yAs1−xPx (lattice matched to InP or GaAs) can be obtained from a simple equation for substrate temperatures below 500°C. This has been verified by a series of experimental results.  相似文献   

7.
Nearly isoperiodic solitary Ga1−x InxAsySb1−y /GaSb heterostructures, in which the composition of the solid solution should be found inside the region of spinodal decay (x⩽0.4), were grown by liquid-phase epitaxy from solution-melts enriched with antimony. On the basis of the results of a study of structural and luminescence properties of Ga1−x InxAsySb1−y /GaSb heterostructures we have determined the main conditions ensuring reproducible growth of epitaxial layers, homogeneous in the composition of their solid solutions in the region where the existence of processes of spinodal and binodal decay have been theoretically predicted. It is shown that the magnitude and sign of the deformation which the layer undergoes during growth and also the thickness of the layer are the main factors influencing the properties of the growing GaInAsSb solid solutions in the spinodal-decay zone. Fiz. Tekh. Poluprovodn. 33, 1134–1136 (September 1999)  相似文献   

8.
The possibility of using liquid-phase epitaxy to obtain Ga1−x InxAsySb1−y solid solutions isoperiodic with GaSb near the miscibility boundary is investigated. The effect of crystallographic orientation of the substrate on the composition of the solid solutions grown in this way is examined, and the indium concentration is observed to grow from 0.215 to 0.238 in the Ga1−x InxAsySb1−y solid phase in the series of substrate orientations (100), (111)A, (111)B. A change in the composition of the solid solution leads to a shift of the long-wavelength edge of the spectral distribution of the photosensitivity. The use of a GaSb (111)B substrate made it possible, without lowering the epitaxy temperature, to increase the indium content in the solid phase to 23.8% and to create long-wavelength photodiodes with spectral photosensitivity threshold λ th=2.55 μm. The primary characteristics of such photodiodes are described, along with aspects of their fabrication. The proposed fabrication technique shows potential for building optoelectronic devices (lasers, LED’s, photodiodes) based on Ga1−x InxAsySb1−y solid solutions with red boundary as high as 2.7 μm. Fiz. Tekh. Poluprovodn. 33, 249–253 (February 1999)  相似文献   

9.
In this paper we show that pseudomorphically strained heterostructures of InAs x P1−x /InP may be an alternative to lattice-matched heterostructures of In1−x Ga x As y P1−y /InP for optoelectronic applications. We first studied the group-V composition control in the gas-source molecular beam epitaxy (GSMBE) of the GaAs1-x P x /GaAs system. Then we studied GSMBE of strained InAs x P1−x /InP multiple quantum wells with the ternary well layer in the composition range 0.15 <x < 0.75. Structural and optical properties were characterized by high-resolution x-ray rocking curves, transmission electron microscopy, absorption and low-temperature photoluminescence measurements. High-quality multiple-quantum-well structures were obtained even for highly strained (up to 2.5%) samples. The achievement of sharp excitonic absorptions at 1.06, 1.3 and 1.55μm at room temperature from InAs x P1−x /InP quantum wells suggests the possibility of long-wavelength optoelectronic applications.  相似文献   

10.
InxGa1-xAsyP1-y layers grown by liquid phase epitaxy on InP substrates were characterized by Hall effect between 4 and 300K. The thermal activation energy of donor impurities was estimated from the temperature dependence of the free electron concentration ; it was found to increase with phosphorus concentration from less than 1meV in InGaAs to about 2.5meV in InP. Evidence for impurity conduction was also observed in some samples at the lowest temperatures. The mobility analysis led to an estimation of the alloy scattering potential in the whole range of compositions 0≤y≤l. At temperatures below 10K, we observed avalanche effect due to impact ionization of electrons from shallow donor impurities into the conduction band.  相似文献   

11.
Reflectance anisotropy spectroscopy (RAS) has been used to study the metalorganic vapor phase epitaxy growth process for GaxIn1−xAsyP1−y/InP light emitting diodes. The sensitivity of RAS to morphology changes is demonstrated by InP growth on different InP:Fe substrates. RAS reveals not only development of dull surfaces but also detects initial temporary roughness of mirror-like layers. Based on the RAS results the substrate preparation was optimized. RAS spectra measured on n- and p-type InP and p-type GaInAsP during light emitting diodes production are suitable for finger-printing of the growth process. Spectra from InP:Si and InP:Zn layers show characteristic features near 4.3 eV which allow for assessment of doping level at growth temperature (640°C). Correlation of RAS spectra and transients during growth with the quaternary composition was achieved. A change in composition of only Δx=0.01, Δy=0.03 corresponding to a shift of photoluminescence-peak position by 16 nm was detectable in RAS spectra. The results demonstrate the high sensitivity and thus the suitability of RAS for on-line control during growth of device structures.  相似文献   

12.
Photoluminescence spectra and efficiency have been measured for several strained InAsyP1−yInxGa1−xAs (0.28 < y ≤ 0.62; 0.66 ≤ x ≤ 0.83) double heterostructures grown by vapor phase epitaxy on InP substrates with graded InAsP buffer layers. Luminescence peak positions between the wavelengths of 1.99 and 2.57 (μm at a temperature of 295K are consistent with bandgap luminescence from the InxGa1−xAs active regions. Despite a high density of dislocations in the buffer layers, internal radiative recombination efficiencies of from 25 to 50% for the structures are found at 295K.  相似文献   

13.
The strain generated in strained layer superlattices (SLS’s) gives rise to a range of novel electronic and structural properties. These electronic properties could be used to either improve the performance of existing optoelectronic components or be exploited to create new devices. One such application is to enhance the efficiency and reliability of long wavelength lasers used in optical telecommunication systems. Such lasers are currently based on InP/InGaAsP lattice matched materials systems which emit at either 1.3 or 1.55 µm. It is believed that Auger recombination and inter-valence band absorption constitute the major mechanisms which limit the overall efficiency and determine threshold current of such devices. Biaxial strain, incorporated into strained layer su-perlattices, causes electronic band structure modifications which may suppress these non radiative loss mechanisms. Atmospheric pressure MOVPE growth of a long wave-length laser structure is described. The structure consists of an InxGa1?xAs/InyGa1?yAs SLS active region with InP cladding layers grown on InP (001). Structural analyses by transmission electron microscopy and x-ray double crystal diffraction have demon-strated that it is possible to grow high quality lasers based on this strained layer sys-tem. A range of structures which emitted at µ1.55 µm were grown and lased, at room temperature, under photoinjection. Equivalent threshold current densities, Jth, were typically in the range 1.5-6 kA/cm2 and high slope efficiencies, η, were achieved.  相似文献   

14.
We determined the conditions for successful lattice-matched growth by liquid-phase epitaxy near T = 620‡ C of GaXIn1−XAs on [111B] InP substrates. We have used the results of the growth of both lattice-matched and intentionally lattice-mismatched epitaxial layers, (0.4 ≤ X ≤ 0.7) to calculate a phase diagram which gives the correct liquidus temperature, (TL ± 1‡ C), and the correct solid composition, (± 5 % of the nominal composition), for the entire range of growth solutions considered for this important ternary semi-conductor system. The parameters appropriate to this calculation are significantly different from those used to describe the growth of GaXIn1−XAs on GaAs. The results of this calculation play an important part in the better understanding of the quaternary alloy GaXIn1−XAsyP1−y. Our measurements show that the ternary alloy lattice-matched to InP is Ga0.47In0.53As, semiconductor with a direct band gap about 0.75 eV at room temperature. We have grown p-n junction homostructures and double-heterostructures on InP substrates. These wafers have been used to make detectors in the 1.0 – 1.7/um range of the optical spectrum.  相似文献   

15.
In these experiments impurity-induced layer disordering (IILD) utilizing chemical reduction of SiO2 by Al (from Al0.8Ga0.2As) is employed to generate Si and O to effect layer disordering. The SiO2-Al0.8Ga0.2As reaction is studied with respect to annealing ambient. By controlling the extent of disordering via As4 overpressure, closely spaced (∼1μm) Si-O IILD buried heterostructure lasers can be optically coupled or uncoupled. Direct observation of O incorporation into the buried layers is shown using secondary ion mass spectroscopy (SIMS). The thermal stability of separate-confinement AlyGa1−yAs-GaAs-InxGa1−xAs quantum well heterostructure (QWH) laser crystals is investigated using SIMS, transmission electron microscopy (TEM), and photoluminescence (PL) measurements. The data show that the thermal stability of a strained-layer In0.1Ga0.9As quantum well (QW) is strongly dependent upon: (1) the layer thickness and heterointerfaces of the AlyGa1−yAs-GaAs waveguide layers located directly above and below the QW, (2) the type of surface encapsulant employed, and (3) the annealing ambient. Narrow single-stripe (<2μm) lasers fabricated via Si-O diffusion and layer disordering exhibit low threshold currents (Ith ∼ 4 mA) and differential quantum efficiencies,η, of 22% per facet under continuous (cw) room-temperature operation.  相似文献   

16.
This paper describes studies of InGaAs layers grown by molecular-beam epitaxy on InP (100) substrates at temperatures of 150–480 °C using various arsenic fluxes. It was found that lowering the epitaxy temperature leads to changes in the growth surface, trapping of excess arsenic, and an increased lattice parameter of the epitaxial layer. When these lowtemperature (LT) grown samples are annealed, the lattice parameter relaxes and excess arsenic clusters form in the InGaAs matrix. For samples grown at 150 °C and annealed at 500 °C, the concentration of these clusters was ∼8×1016 cm−3, with an average cluster size of ∼5 nm. Assuming that all the excess arsenic is initially trapped in the form of antisite defects, the magnitude of the LT-grown InGaAs lattice parameter relaxation caused by annealing implies an excess arsenic concentration (N AsN GaN In)/(N As+N Ga+N In)=0.4 at.%. For layers of InGaAs grown at 150 °C, a high concentration of free electrons (∼1×1017 cm−3) is characteristic. Annealing such layers at 500 °C decreases the concentration of electrons to ∼1×1017 cm−3. The results obtained here indicate that this change in the free-electron concentration correlates qualitatively with the change in excess arsenic concentration in the layers. Fiz. Tekh. Poluprovodn. 33, 900–906 (August 1999)  相似文献   

17.
Two types of quantum well (QW) structures grown lattice matched on (100) GaAs have been studied. The first type of structure consists of pseudomorphic GaAsxSb1-x/GaAs (x≤0.3) SQWs which show emission wavelengths longer than those reported for pseudomorphic InyGa1−yAs/GaAs QWs. However, the attractive emission wavelength of 1.3 μm has not been achieved. To reach this goal, a novel type of bilayer QW (BQW) has been grown consisting of a stack of two adjacent pseudomorphic layers of GaAsxSb1−x and In Ga1-y As embedded between GaAs confinement layers. In this BQW, a type-II heterojunction is formed between GaAsxSb1−x and InyGa1−yAs, resulting in a spatially indirect radiative recombination of electrons and holes at emission wavelengths longer than those achieved in the GaAsxSb1−x/GaAs and IiyGa1−yAs/GaAs SQWs. The longest 300K emission wavelength observed so far was 1.332 μm.  相似文献   

18.
Spectroscopic ellipsometry (SE) has been used to investigate transition layers for InGaAs/InP heterointerfaces. For the case of InGaAs on InP, we have found that the samples can be best modeled by a strained InxGa1-xAs film with the possible presence of a thin interface region (15Å). We are unable to conclusively determine the existence of such a thin transition region. For InP on InGaAs, we find clear indications of As contamination in the bulk film, and that the addition of a thin interface region of In0.75Gao0.25As0.5P0.5 improves both the numerical fit and shape of the dielectric response curves, especially around E1 and E1 + Δ1 where the effects of a transition region are most pronounced. However, difficulties in modeling the dielectric response of the contaminated InP film make identification of an interface transition region only speculative at this point. Multiple single quantum well structures have also been grown and analyzed with 7K photoluminescence. The quality of the quantum wells shows strong dependence on the gas switching sequence used at the heterointerfaces. The best switching sequence produced a 0.5 nm well with a 7K FWHM of only 12.3 meV. Multiple quantum wells have also been grown to investigate the uniformity and repeatability of our system. Twenty period MQWs with a well width of 1.6 nm display a 14K FWHM of 7.9 meV.  相似文献   

19.
High-power broad-area InGaNAs/GaAs quantum-well (QW) edge-emitting lasers on GaAs substrates in the 1200 nm range are reported. The epitaxial layers of the InGaNAs/GaAs QW laser wafers were grown on n+-GaAs substrates by using metal-organic chemical vapor deposition (MOCVD). The thickness of the InGaNAs/GaAs QW layers is 70 Å/1200 Å. The indium content (x) of the InxGa1−xNyAs1−y QW layers is estimated to be 0.35-0.36, while the nitrogen content (y) is estimated to be 0.006-0.009. More indium content (In) and nitrogen content (N) in the InGaNAs QW layer enables the laser emission up to 1300 nm range. The epitaxial layer quality, however, is limited by the strain in the grown layer. The devices were made with different ridge widths from 5 to 50 μm. A very low threshold current density (Jth) of 80 A/cm2 has been obtained for the 50 μm × 500 μm LD. A number of InGaNAs/GaAs epi-wafers were made into broad-area LDs. A maximum output power of 95 mW was measured for the broad-area InGaNAs/GaAs QW LDs. The variations in the output powers of the broad-area LDs are mainly due to strain-induced defects the InGaNAs QW layers.  相似文献   

20.
The surface step structure of Ga1−xInxAsySb1−y grown by organometallic vapor phase epitaxy on GaSb substrates has been studied by atomic force microscopy. Epilayers were grown at 525°C and 575°C on (001) GaSb substrates misoriented 2° toward (101) or 6° toward (1 1)B. For Ga0.88In0.12As0.1Sb0.9 grown at 575°C, the surface exhibits step-bunching on both types of substrates. When the composition is increased to Ga0.86In0.14As0.12Sb0.88, the periodic step structure breaks down and the surface becomes irregular. The deterioration of the step structure is a consequence of phase separation at the surface of the metastable GaInAsSb epilayer, which leads to the formation of GaAs- and InSb-rich regions. The photoluminescence (PL) of such layers show significant broadening due to carrier recombination in the lower energy gap InSb-rich quaternary regions. On the other hand, the surface of GaInAsSb epilayers grown at a lower temperature of 525°C is vicinal with steps heights of one to two monolayers. The PL FWHM values are considerably smaller for these layers. This improvement in material quality is related to smaller adatom lifetimes at the lower growth temperature. The importance of surface kinetics as it influences the step structure and thermodynamically driven phase separation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号