首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In this paper, we introduce a novel technique for pre‐filtering multi‐layer shadow maps. The occluders in the scene are stored as variable‐length lists of fragments for each texel. We show how this representation can be filtered by progressively merging these lists. In contrast to previous pre‐filtering techniques, our method better captures the distribution of depth values, resulting in a much higher shadow quality for overlapping occluders and occluders with different depths. The pre‐filtered maps are generated and evaluated directly on the GPU, and provide efficient queries for shadow tests with arbitrary filter sizes. Accurate soft shadows are rendered in real‐time even for complex scenes and difficult setups. Our results demonstrate that our pre‐filtered maps are general and particularly scalable.  相似文献   

4.
We present a novel approach for optimizing real‐valued functions based on a wide range of topological criteria. In particular, we show how to modify a given function in order to remove topological noise and to exhibit prescribed topological features. Our method is based on using the previously‐proposed persistence diagrams associated with real‐valued functions, and on the analysis of the derivatives of these diagrams with respect to changes in the function values. This analysis allows us to use continuous optimization techniques to modify a given function, while optimizing an energy based purely on the values in the persistence diagrams. We also present a procedure for aligning persistence diagrams of functions on different domains, without requiring a mapping between them. Finally, we demonstrate the utility of these constructions in the context of the functional map framework, by first giving a characterization of functional maps that are associated with continuous point‐to‐point correspondences, directly in the functional domain, and then by presenting an optimization scheme that helps to promote the continuity of functional maps, when expressed in the reduced basis, without imposing any restrictions on metric distortion. We demonstrate that our approach is efficient and can lead to improvement in the accuracy of maps computed in practice.  相似文献   

5.
In this paper, we propose to consider the adjoint operators of functional maps, and demonstrate their utility in several tasks in geometry processing. Unlike a functional map, which represents a correspondence simply using the pull‐back of function values, the adjoint operator reflects both the map and its distortion with respect to given inner products. We argue that this property of adjoint operators and especially their relation to the map inverse under the choice of different inner products, can be useful in applications including bi‐directional shape matching, shape exploration, and pointwise map recovery among others. In particular, in this paper, we show that the adjoint operators can be used within the cycle‐consistency framework to encode and reveal the presence or lack of consistency between distortions in a collection, in a way that is complementary to the previously used purely map‐based consistency measures. We also show how the adjoint can be used for matching pairs of shapes, by accounting for maps in both directions, can help in recovering point‐to‐point maps from their functional counterparts, and describe how it can shed light on the role of functional basis selection.  相似文献   

6.
We present a new method for decomposing a 3D voxel shape into disjoint segments using the shape's simplified surface‐skeleton. The surface skeleton of a shape consists of 2D manifolds inside its volume. Each skeleton point has a maximally inscribed ball that touches the boundary in at least two contact points. A key observation is that the boundaries of the simplified fore‐ and background skeletons map one‐to‐one to increasingly fuzzy, soft convex, respectively concave, edges of the shape. Using this property, we build a method for segmentation of 3D shapes which has several desirable properties. Our method segments both noisy shapes and shapes with soft edges which vanish over low‐curvature regions. Multiscale segmentations can be obtained by varying the simplification level of the skeleton. We present a voxel‐based implementation of our approach and illustrate it on several realistic examples.  相似文献   

7.
Conformal parameterizations over the sphere provide high‐quality maps between genus zero surfaces, and are essential for applications such as data transfer and comparative shape analysis. However, such maps are not unique: to define correspondence between two surfaces, one must find the Möbius transformation that best aligns two parameterizations—akin to picking a translation and rotation in rigid registration problems. We describe a simple procedure that canonically centers and rotationally aligns two spherical maps. Centering is implemented via elementary operations on triangle meshes in ?3, and minimizes area distortion. Alignment is achieved using the FFT over the group of rotations. We examine this procedure in the context of spherical conformal parameterization, orbifold maps, non‐rigid symmetry detection, and dense point‐to‐point surface correspondence.  相似文献   

8.
Computation of illumination with soft‐shadows from all‐frequency environment maps, is a computationally expensive process. Use of pre‐computation add the limitation that receiver's geometry must be known in advance, since Irradiance computation takes into account the receiver's normal direction. We propose a method that using a new notion that we introduce, the Fullsphere Irradiance, allows us to accumulate the contribution from all light sources in the scene, on a possible receiver without knowing the receiver's geometry. This expensive computation is done in a pre‐processing step. The pre‐computed value is used at run time to compute the Irradiance arriving at any receiver with known direction. We show how using this technique we compute soft‐shadows and self‐shadows in real‐time from all‐frequency environments, with only modest memory requirements. A GPU implementation of the method, yields high frame rates even for complex scenes with dozens of dynamic occluders and receivers.  相似文献   

9.
We propose a hybrid smoothed particle hydrodynamics solver for efficientlysimulating incompressible fluids using an interface handling method for boundary conditions in the pressure Poisson equation. We blend particle density computed with one smooth and one spiky kernel to improve the robustness against both fluid–fluid and fluid–solid collisions. To further improve the robustness and efficiency, we present a new interface handling method consisting of two components: free surface handling for Dirichlet boundary conditions and solid boundary handling for Neumann boundary conditions. Our free surface handling appropriately determines particles for Dirichlet boundary conditions using Jacobi‐based pressure prediction while our solid boundary handling introduces a new term to ensure the solvability of the linear system. We demonstrate that our method outperforms the state‐of‐the‐art particle‐based fluid solvers.  相似文献   

10.
We propose a novel approach for shape matching between triangular meshes that, in contrast to existing methods, can match crease features. Our approach is based on a hybrid optimization scheme, that solves simultaneously for an elastic deformation of the source and its projection on the target. The elastic energy we minimize is invariant to rigid body motions, and its non‐linear membrane energy component favors locally injective maps. Symmetrizing this model enables feature aligned correspondences even for non‐isometric meshes. We demonstrate the advantage of our approach over state of the art methods on isometric and non‐isometric datasets, where we improve the geodesic distance from the ground truth, the conformal and area distortions, and the mismatch of the mean curvature functions. Finally, we show that our computed maps are applicable for surface interpolation, consistent cross‐field computation, and consistent quadrangular remeshing of a set of shapes.  相似文献   

11.
In this paper we develop an in-depth theoretical investigation of the discrete Hamiltonian eigenbasis, which remains quite unexplored in the geometry processing community. This choice is supported by the fact that Dirichlet eigenfunctions can be equivalently computed by defining a Hamiltonian operator, whose potential energy and localization region can be controlled with ease. We vary with continuity the potential energy and study the relationship between the Dirichlet Laplacian and the Hamiltonian eigenbases with the functional map formalism. We develop a global analysis to capture the asymptotic behavior of the eigenpairs. We then focus on their local interactions, namely the veering patterns that arise between proximal eigenvalues. Armed with this knowledge, we are able to track the eigenfunctions in all possible configurations, shedding light on the nature of the functional maps. We exploit the Hamiltonian-Dirichlet connection in a partial shape matching problem, obtaining state of the art results, and provide directions where our theoretical findings could be applied in future research.  相似文献   

12.
We present a new method for non‐rigid shape matching designed to enforce continuity of the resulting correspondence. Our method is based on the recently proposed functional map representation, which allows efficient manipulation and inference but often fails to provide a continuous point‐to‐point mapping. We address this problem by exploiting the connection between the operator representation of mappings and flows of vector fields. In particular, starting from an arbitrary continuous map between two surfaces we find an optimal flow that makes the final correspondence operator as close as possible to the initial functional map. Our method also helps to address the symmetric ambiguity problem inherent in many intrinsic correspondence methods when matching symmetric shapes. We provide practical and theoretical results showing that our method can be used to obtain an orientation preserving or reversing map starting from a functional map that represents the mixture of the two. We also show how this method can be used to improve the quality of maps produced by existing shape matching methods, and compare the resulting map's continuity with results obtained by other operator‐based techniques.  相似文献   

13.
Capturing exposure sequences to compute high dynamic range (HDR) images causes motion blur in cases of camera movement. This also applies to light‐field cameras: frames rendered from multiple blurred HDR light‐field perspectives are also blurred. While the recording times of exposure sequences cannot be reduced for a single‐sensor camera, we demonstrate how this can be achieved for a camera array. Thus, we decrease capturing time and reduce motion blur for HDR light‐field video recording. Applying a spatio‐temporal exposure pattern while capturing frames with a camera array reduces the overall recording time and enables the estimation of camera movement within one light‐field video frame. By estimating depth maps and local point spread functions (PSFs) from multiple perspectives with the same exposure, regional motion deblurring can be supported. Missing exposures at various perspectives are then interpolated.  相似文献   

14.
Owing to the many possible errors that may occur during real‐world mapping, point set maps often present a huge amount of outliers and large levels of noise. We present two robust surface reconstruction techniques dealing with corrupted point sets without resorting to any prefiltering step. They are based on building an unsigned distance function, discretely evaluated on an adaptive tetrahedral grid, and defined from an outlier‐robust splat representation. To extract the surface from this volumetric view, the space is partitioned into two subsets, the surface of interest being at the boundary separating them. While both methods are based on a similar graph definition derived from the above‐mentioned grid, they differ in the partitioning procedure. First, we propose a method using S‐T cuts to separate the inside and outside of the mapped area. Second, we use a normalized cut approach to partition the volume using only the values of the unsigned distance function. We prove the validity of our methods by applying them to challenging underwater data sets (sonar and image based), and we benchmark their results against the approaches in the state of the art.  相似文献   

15.
Reconstructing surfaces from scanned 3D points has been an important research area for several decades. One common approach that has proven efficient and robust to noise is implicit surface reconstruction, i.e. fitting to the points a 3D scalar function (such as an indicator function or signed-distance field) and then extracting an isosurface. Though many techniques fall within this category, existing methods either impose no boundary constraints or impose Dirichlet/Neumann conditions on the surface of a bounding box containing the scanned data. In this work, we demonstrate the benefit of supporting Dirichlet constraints on a general boundary. To this end, we adapt the Screened Poisson Reconstruction algorithm to input a constraint envelope in addition to the oriented point cloud. We impose Dirichlet boundary conditions, forcing the reconstructed implicit function to be zero outside this constraint surface. Using a visual hull and/or depth hull derived from RGB-D scans to define the constraint envelope, we obtain substantially improved surface reconstructions in regions of missing data.  相似文献   

16.
Polar NURBS surface is a kind of periodic NURBS surface, one boundary of which shrinks to a degenerate polar point. The specific topology of its control‐point mesh offers the ability to represent a cap‐like surface, which is common in geometric modeling. However, there is a critical and challenging problem that hinders its application: curvature continuity at the extraordinary singular pole. We first propose a sufficient and necessary condition of curvature continuity at the pole. Then, we present constructive methods for the two key problems respectively: how to construct a polar NURBS surface with curvature continuity and how to reform an ordinary polar NURBS surface to curvature continuous. The algorithms only depend on the symbolic representation and operations of NURBS, and they introduce no restrictions on the degree or the knot vectors. Examples and comparisons demonstrate the applications of the curvature‐continuous polar NURBS surface in hole‐filling and free‐shape modeling.  相似文献   

17.
Multi‐Light Image Collections (MLICs), i.e., stacks of photos of a scene acquired with a fixed viewpoint and a varying surface illumination, provide large amounts of visual and geometric information. In this survey, we provide an up‐to‐date integrative view of MLICs as a mean to gain insight on objects through the analysis and visualization of the acquired data. After a general overview of MLICs capturing and storage, we focus on the main approaches to produce representations usable for visualization and analysis. In this context, we first discuss methods for direct exploration of the raw data. We then summarize approaches that strive to emphasize shape and material details by fusing all acquisitions in a single enhanced image. Subsequently, we focus on approaches that produce relightable images through intermediate representations. This can be done both by fitting various analytic forms of the light transform function, or by locally estimating the parameters of physically plausible models of shape and reflectance and using them for visualization and analysis. We finally review techniques that improve object understanding by using illustrative approaches to enhance relightable models, or by extracting features and derived maps. We also review how these methods are applied in several, main application domains, and what are the available tools to perform MLIC visualization and analysis. We finally point out relevant research issues, analyze research trends, and offer guidelines for practical applications.  相似文献   

18.
Rendering translucent materials in real time is usually done by using surface diffusion and/or (translucent) shadow maps. The downsides of these approaches are, that surface diffusion cannot handle translucency effects that show up when rendering thin objects, and that translucent shadow maps are only available for point light sources. Furthermore, translucent shadow maps introduce limitations to shadow mapping techniques exploiting the same maps. In this paper we present a novel approach for rendering translucent materials at interactive frame rates. Our approach allows for an efficient calculation of translucency with native support for general illumination conditions, especially area and environment lighting, at high accuracy. The proposed technique's only parameter is the used diffusion profile, and thus it works out of the box without any parameter tuning. Furthermore, it can be used in combination with any existing surface diffusion techniques to add translucency effects. Our approach introduces Spatial Adjacency Maps that depend on precalculations to be done for fixed meshes. We show that these maps can be updated in real time to also handle deforming meshes and that our results are of superior quality as compared to other well known real‐time techniques for rendering translucency.  相似文献   

19.
In this paper we present a novel model for computing the oriented normal field on a point cloud. Differently from previous two-stage approaches, our method integrates the unoriented normal estimation and the consistent normal orientation into one variational framework. The normal field with consistent orientation is obtained by minimizing a combination of the Dirichlet energy and the coupled-orthogonality deviation, which controls the normals perpendicular to and continuously varying on the underlying shape. The variational model leads to solving an eigenvalue problem. If unoriented normal field is provided, the model can be modified for consistent normal orientation. We also present experiments which demonstrate that our estimates of oriented normal vectors are accurate for smooth point clouds, and robust in the presence of noise, and reliable for surfaces with sharp features, e.g., corners, ridges, close-by sheets and thin structures.  相似文献   

20.
We present a generic framework for compression of densely sampled three‐dimensional (3D) surfaces in order to satisfy the increasing demand for storing large amounts of 3D content. We decompose a given surface into patches that are parameterized as elevation maps over planar domains and resampled on regular grids. The resulting shaped images are encoded using a state‐of‐the‐art wavelet image coder. We show that our method is not only applicable to mesh‐ and point‐based geometry, but also outperforms current surface encoders for both primitives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号