首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed an interactive system to design a customized cover for a given three‐dimensional (3D) object such as a camera, teapot, or car. The system first computes the convex hull of the input geometry. The user segments it into several cloth patches by drawing on the 3D surface. This paper provides two technical contributions. First, it introduces a specialized flattening algorithm for cover patches. It makes each two‐dimensional edge in the flattened pattern equal to or longer than the original 3D edge; a smaller patch would fail to cover the object, and a larger patch would result in extra wrinkles. Second, it introduces a mechanism to verify that the user‐specified opening would be large enough for the object to be removed. Starting with the initial configuration, the system virtually “pulls” the object out of the cover while avoiding excessive stretching of cloth patches. We used the system to design real covers and confirmed that it functions as intended.  相似文献   

2.
Modeling 3D origami pieces using conventional software is laborious due to the geometric constraints imposed by the complicated layered structure. Targeting origami models used in visual content such as CG illustrations and movies, we propose an interactive system that dramatically simplifies the modeling of 3D origami pieces with plausible outer shapes, while omitting accurate inner structures. By focusing on flat origami models with a front‐and‐back symmetry commonly found in traditional artworks, our system realizes easy and quick modeling via single‐view interface; given a reference image of the target origami piece, the user draws polygons of planar faces onto the image, and assigns annotations indicating the types of folding operations. Our system automatically rectifies the manually‐specified polygons, infers the folded structures that should yield the user‐specified polygons with reference to the depth order of layered polygons, and generates a plausible 3D model while accounting for gaps between layers. Our system is versatile enough for modeling pseudo‐origami models that are not realizable by folding a single sheet of paper. Our user study demonstrates that even novice users without the specialized knowledge and experience on origami and 3D modeling can create plausible origami models quickly.  相似文献   

3.
Surface selection is one of the fundamental interactions in shape modeling. In the case of complex models, this task is often tedious for at least two reasons: firstly the local geometry of a given region may be hard to manually select and needs great accuracy; secondly the selection process may have to be repeated a large number of times for similar regions requiring similar subsequent editing. We propose SimSelect, a new system for interactive selection on 3D surfaces addressing these two issues. We cope with the accuracy issue by classifying selections in different types, namely components, parts and patches for which we independently optimize the selection process. Second, we address the repetitiveness issue by introducing an expansion process based on shape recognition which automatically retrieves potential selections similar to the user‐defined one. As a result, our system provides the user with a compact set of simple interaction primitives providing a smooth select‐and‐edit workflow.  相似文献   

4.
Recent 3D sketch tools produce networks of three‐space curves that suggest the contours of shapes. The shapes may be non‐manifold, closed three‐dimensional, open two‐dimensional, or mixed. We describe a system that automatically generates intuitively appealing piecewise‐smooth surfaces from such a curve network, and an intelligent user interface for modifying the automatically chosen surface patches. Both the automatic and the semi‐automatic parts of the system use a linear algebra representation of the set of surface patches to track the topology. On complicated inputs from ILoveSketch [ [BBS08] ], our system allows the user to build the desired surface with just a few mouse‐clicks.  相似文献   

5.
Glyphs are a fundamental tool in tensor visualization, since they provide an intuitive geometric representation of the full tensor information. The Higher‐Order Maximum Enhancing (HOME) glyph, a generalization of the second‐order tensor ellipsoid, was recently shown to emphasize the orientational information in the tensor through a pointed shape around maxima. This paper states and formally proves several important properties of this novel glyph, presents its first three‐dimensional implementation, and proposes a new coloring scheme that reflects peak direction and sharpness. Application to data from High Angular Resolution Diffusion Imaging (HARDI) shows that the method allows for interactive data exploration and confirms that the HOME glyph conveys fiber spread and crossings more effectively than the conventional polar plot.  相似文献   

6.
Synthesizing and exploring large‐scale realistic urban road networks is beneficial to 3D content creation, traffic animation and urban planning. In this paper, we present an interactive tool that allows untrained users to design roads with complex realistic details and styles. Roads are generated by growing a geometric graph. During a sketching phase, the user specifies the target area and the examples. During a growing phase, two types of growth are effectively applied to generate roads in the target area; example‐based growth uses patches extracted from the source example to generate roads that preserve some interesting structures in the example road networks; procedural‐based growth uses the statistical information of the source example while effectively adapting the roads to the underlying terrain and the already generated roads. User‐specified warping, blending and interpolation operations are used at will to produce new road network designs that are inspired by the examples. Finally, our method computes city blocks, individual parcels and plausible building and tree geometries. We have used our approach to create road networks covering up to 200 and containing over 3500 km of roads.  相似文献   

7.
This paper presents a method that can convert a given 3D mesh into a flat‐foldable model consisting of rigid panels. A previous work proposed a method to assist manual design of a single component of such flat‐foldable model, consisting of vertically‐connected side panels as well as horizontal top and bottom panels. Our method semi‐automatically generates a more complicated model that approximates the input mesh with multiple convex components. The user specifies the folding direction of each convex component and the fidelity of shape approximation. Given the user inputs, our method optimizes shapes and positions of panels of each convex component in order to make the whole model flat‐foldable. The user can check a folding animation of the output model. We demonstrate the effectiveness of our method by fabricating physical paper prototypes of flat‐foldable models.  相似文献   

8.
Statistical shape modeling is a widely used technique for the representation and analysis of the shapes and shape variations present in a population. A statistical shape model models the distribution in a high dimensional shape space, where each shape is represented by a single point. We present a design study on the intuitive exploration and visualization of shape spaces and shape models. Our approach focuses on the dual‐space nature of these spaces. The high‐dimensional shape space represents the population, whereas object space represents the shape of the 3D object associated with a point in shape space. A 3D object view provides local details for a single shape. The high dimensional points in shape space are visualized using a 2D scatter plot projection, the axes of which can be manipulated interactively. This results in a dynamic scatter plot, with the further extension that each point is visualized as a small version of the object shape that it represents. We further enhance the population‐object duality with a new type of view aimed at shape comparison. This new “shape evolution view” visualizes shape variability along a single trajectory in shape space, and serves as a link between the two spaces described above. Our three‐view exploration concept strongly emphasizes linked interaction between all spaces. Moving the cursor over the scatter plot or evolution views, shapes are dynamically interpolated and shown in the object view. Conversely, camera manipulation in the object view affects the object visualizations in the other views. We present a GPU‐accelerated implementation, and show the effectiveness of the three‐view approach using a number of real‐world cases. In these, we demonstrate how this multi‐view approach can be used to visually explore important aspects of a statistical shape model, including specificity, compactness and reconstruction error.  相似文献   

9.
This paper presents a method that generates natural and intuitive deformations via direct manipulation and smooth interpolation for multi‐element 2D shapes. Observing that the structural relationships between different parts of a multi‐element 2D shape are important for capturing its feature semantics, we introduce a simple structure called a feature frame to represent such relationships. A constrained optimization is solved for shape manipulation to find optimal deformed shapes under user‐specified handle constraints. Based on the feature frame, local feature preservation and structural relationship maintenance are directly encoded into the objective function. Beyond deforming a given multi‐element 2D shape into a new one at each key frame, our method can automatically generate a sequence of natural intermediate deformations by interpolating the shapes between the key frames. The method is computationally efficient, allowing real‐time manipulation and interpolation, as well as generating natural and visually plausible results.  相似文献   

10.
We present a novel image‐based technique for modeling complex unfoliaged trees. Existing tree modeling tools either require capturing a large number of views for dense 3D reconstruction or rely on user inputs and botanic rules to synthesize natural‐looking tree geometry. In this paper, we focus on faithfully recovering real instead of realistically‐looking tree geometry from a sparse set of images. Our solution directly integrates 2D/3D tree topology as shape priors into the modeling process. For each input view, we first estimate a 2D skeleton graph from its matte image and then find a 2D skeleton tree from the graph by imposing tree topology. We develop a simple but effective technique for computing the optimal 3D skeleton tree most consistent with the 2D skeletons. For each edge in the 3D skeleton tree, we further apply volumetric reconstruction to recover its corresponding curved branch. Finally, we use piecewise cylinders to approximate each branch from the volumetric results. We demonstrate our framework on a variety of trees to illustrate the robustness and usefulness of our technique.  相似文献   

11.
We present a new intuitive UI, which we call cross‐boundary brushes, for interactive mesh decomposition. The user roughly draws one or more strokes across a desired cut and our system automatically returns a best cut running through all the strokes. By the different natures of part components (i.e., semantic parts) and patch components (i.e., flatter surface patches) in general models, we design two corresponding brushes: part‐brush and patch‐brush. These two types of brushes share a common user interface, enabling easy switch between them. The part‐brush executes a cut along an isoline of a harmonic field driven by the user‐specified strokes. We show that the inherent smoothness of the harmonic field together with a carefully designed isoline selection scheme lead to segmentation results that are insensitive to noise, pose, tessellation and variation in user's strokes. Our patch‐brush uses a novel facet‐based surface metric that alleviates sensitivity to noise and fine details common in region‐growing algorithms. Extensive experimental results demonstrate that our cutting tools can produce user‐desired segmentations for a wide variety of models even with single strokes. We also show that our tools outperform the state‐of‐art interactive segmentation tools in terms of ease of use and segmentation quality.  相似文献   

12.
In this paper we present several techniques to interactively explore representations of 2D vector fields. Through a set of simple hand postures used on large, touch‐sensitive displays, our approach allows individuals to custom‐design glyphs (arrows, lines, etc.) that best reveal patterns of the underlying dataset. Interactive exploration of vector fields is facilitated through freedom of glyph placement, glyph density control, and animation. The custom glyphs can be applied individually to probe specific areas of the data but can also be applied in groups to explore larger regions of a vector field. Re‐positionable sources from which glyphs—animated according to the local vector field—continue to emerge are used to examine the vector field dynamically. The combination of these techniques results in an engaging visualization with which the user can rapidly explore and analyze varying types of 2D vector fields, using a virtually infinite number of custom‐designed glyphs.  相似文献   

13.
Modeling of realistic garments is essential for online shopping and many other applications including virtual characters. Most of existing methods either require a multi‐camera capture setup or a restricted mannequin pose. We address the garment modeling problem according to a single input image. We design an all‐pose garment outline interpretation, and a shading‐based detail modeling algorithm. Our method first estimates the mannequin pose and body shape from the input image. It further interprets the garment outline with an oriented facet decided according to the mannequin pose to generate the initial 3D garment model. Shape details such as folds and wrinkles are modeled by shape‐from‐shading techniques, to improve the realism of the garment model. Our method achieves similar result quality as prior methods from just a single image, significantly improving the flexibility of garment modeling.  相似文献   

14.
We present the design of an interactive image‐based modeling tool that enables a user to quickly generate detailed 3D models with texture from a set of calibrated input images. Our main contribution is an intuitive user interface that is entirely based on simple 2D painting operations and does not require any technical expertise by the user or difficult pre‐processing of the input images. One central component of our tool is a GPU‐based multi‐view stereo reconstruction scheme, which is implemented by an incremental algorithm, that runs in the background during user interaction so that the user does not notice any significant response delay.  相似文献   

15.
We present a new approach aimed at understanding the structure of connections in edge‐bundling layouts. We combine the advantages of edge bundles with a bundle‐centric simplified visual representation of a graph's structure. For this, we first compute a hierarchical edge clustering of a given graph layout which groups similar edges together. Next, we render clusters at a user‐selected level of detail using a new image‐based technique that combines distance‐based splatting and shape skeletonization. The overall result displays a given graph as a small set of overlapping shaded edge bundles. Luminance, saturation, hue, and shading encode edge density, edge types, and edge similarity. Finally, we add brushing and a new type of semantic lens to help navigation where local structures overlap. We illustrate the proposed method on several real‐world graph datasets.  相似文献   

16.
We present novel visual and interactive techniques for exploratory visualization of animal kinematics using instantaneous helical axes (IHAs). The helical axis has been used in orthopedics, biomechanics, and structural mechanics as a construct for describing rigid body motion. Within biomechanics, recent imaging advances have made possible accurate high‐speed measurements of individual bone positions and orientations during experiments. From this high‐speed data, instantaneous helical axes of motion may be calculated. We address questions of effective interactive, exploratory visualization of this high‐speed 3D motion data. A 3D glyph that encodes all parameters of the IHA in visual form is presented. Interactive controls are used to examine the change in the IHA over time and relate the IHA to anatomical features of interest selected by a user. The techniques developed are applied to a stereoscopic, interactive visualization of the mechanics of pig mastication and assessed by a team of evolutionary biologists who found interactive IHA‐based analysis a useful addition to more traditional motion analysis techniques.  相似文献   

17.
We propose a novel rendering method which supports interactive BRDF editing as well as relighting on a 3D scene. For interactive BRDF editing, we linearize an analytic BRDF model with basis BRDFs obtained from a principal component analysis. For each basis BRDF, the radiance transfer is precomputed and stored in vector form. In rendering time, illumination of a point is computed by multiplying the radiance transfer vectors of the basis BRDFs by the incoming radiance from gather samples and then linearly combining the results weighted by user‐controlled parameters. To improve the level of accuracy, a set of sub‐area samples associated with a gather sample refines the glossy reflection of the geometric details without increasing the precomputation time. We demonstrate this program with a number of examples to verify the real‐time performance of relighting and BRDF editing on 3D scenes with complex lighting and geometry.  相似文献   

18.
We present Video Brush, a novel interface for interactive video cutout. Inspired by the progressive selection scheme in images, our interface is designed to select video objects by painting on successive frames as the video plays. The video objects are progressively selected by solving the graph‐cut based local optimization according to the strokes drawn by the brush on each painted frame. In order to provide users interactive feedback, we accelerate 3D graph‐cut by efficient graph building and multi‐level banded graph‐cut. Experimental results show that our novel interface is both intuitive and efficient for video cutout.  相似文献   

19.
An Example-based Procedural System for Element Arrangement   总被引:2,自引:0,他引:2  
We present a method for synthesizing two dimensional (2D) element arrangements from an example. The main idea is to combine texture synthesis techniques based‐on a local neighborhood comparison and procedural modeling systems based‐on local growth. Given a user‐specified reference pattern, our system analyzes neigh‐borhood information of each element by constructing connectivity. Our synthesis process starts with a single seed and progressively places elements one by one by searching a reference element which has local features that are the most similar to the target place of the synthesized pattern. To support creative design activities, we introduce three types of interaction for controlling global features of the resulting pattern, namely a spray tool, a flow field tool, and a boundary tool. We also introduce a global optimization process that helps to avoid local error concentrations. We illustrate the feasibility of our method by creating several types of 2D patterns.  相似文献   

20.
Large datasets of 3D objects require an intuitive way to browse and quickly explore shapes from the collection. We present a dynamic map of shapes where similar shapes are placed next to each other. Similarity between 3D models exists in a high dimensional space which cannot be accurately expressed in a two dimensional map. We solve this discrepancy by providing a local map with pan capabilities and a user interface that resembles an online experience of navigating through geographical maps. As the user navigates through the map, new shapes appear which correspond to the specific navigation tendencies and interests of the user, while maintaining a continuous browsing experience. In contrast with state of the art methods which typically reduce the search space by selecting constraints or employing relevance feedback, our method enables exploration of large sets without constraining the search space, allowing the user greater creativity and serendipity. A user study evaluation showed a strong preference of users for our method over a standard relevance feedback method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号