首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Variational 3D Shape Segmentation for Bounding Volume Computation   总被引:1,自引:0,他引:1  
We propose a variational approach to computing an optimal segmentation of a 3D shape for computing a union of tight bounding volumes. Based on an affine invariant measure of e-tightness, the resemblance to ellipsoid, a novel functional is formulated that governs an optimization process to obtain a partition with multiple components. Refinement of segmentation is driven by application-specific error measures, so that the final bounding volume meets pre-specified user requirement. We present examples to demonstrate the effectiveness of our method and show that it works well for computing ellipsoidal bounding volumes as well as oriented bounding boxes.  相似文献   

2.
In this paper, a new method for deformable 3D shape registration is proposed. The algorithm computes shape transitions based on local similarity transforms which allows to model not only as‐rigid‐as‐possible deformations but also local and global scale. We formulate an ordinary differential equation (ODE) which describes the transition of a source shape towards a target shape. We assume that both shapes are roughly pre‐aligned (e.g., frames of a motion sequence). The ODE consists of two terms. The first one causes the deformation by pulling the source shape points towards corresponding points on the target shape. Initial correspondences are estimated by closest‐point search and then refined by an efficient smoothing scheme. The second term regularizes the deformation by drawing the points towards locally defined rest positions. These are given by the optimal similarity transform which matches the initial (undeformed) neighborhood of a source point to its current (deformed) neighborhood. The proposed ODE allows for a very efficient explicit numerical integration. This avoids the repeated solution of large linear systems usually done when solving the registration problem within general‐purpose non‐linear optimization frameworks. We experimentally validate the proposed method on a variety of real data and perform a comparison with several state‐of‐the‐art approaches.  相似文献   

3.
A knitted animal is made of a closed surface consisting of several knitted patches knitted out of yarn and stuffed with cotton ( Fig. 1 ). We introduce a system to create a knitting pattern from a given 3D surface model (mainly designed for rotund animal models). A knitting pattern is an instructional diagram describing how to knit yarn to obtain a desired shape. Since the creation of knitting patterns requires special skill, this is difficult for nonprofessionals. Our system automates the process and allows anyone to obtain his or her original knitting patterns from a 3D model. The system first covers the surface of the model with parallel winding strips of constant width. The system then samples the strip at constant intervals to convert it into a knitting pattern. The result is presented in a standard visual format so that the user can easily refer it during actual knitting. We show several examples of knitted animals created using the system.
Figure 1 Open in figure viewer PowerPoint Example of a knitted animal. A typical knitted animal consists of several circular and cylindrical patches.  相似文献   

4.
This paper deals with the reconstruction of 2‐dimensional geometric shapes from unorganized 1‐dimensional cross‐sections. We study the problem in its full generality following the approach of Boissonnat and Memari [ [BM07] ] for the analogous 3D problem. We propose a new variant of this method and provide sampling conditions to guarantee that the output of the algorithm has the same topology as the original object and is close to it (for the Hausdorff distance).  相似文献   

5.
We present a new technique to implement operators that modify the topology of polygonal meshes at intersections and self‐intersections. Depending on the modification strategy, this effectively results in operators for Boolean combinations or for the construction of outer hulls that are suited for mesh repair tasks and accurate mesh‐based front tracking of deformable materials that split and merge. By combining an adaptive octree with nested binary space partitions (BSP), we can guarantee exactness (= correctness) and robustness (= completeness) of the algorithm while still achieving higher performance and less memory consumption than previous approaches. The efficiency and scalability in terms of runtime and memory is obtained by an operation localization scheme. We restrict the essential computations to those cells in the adaptive octree where intersections actually occur. Within those critical cells, we convert the input geometry into a plane‐based BSP‐representation which allows us to perform all computations exactly even with fixed precision arithmetics. We carefully analyze the precision requirements of the involved geometric data and predicates in order to guarantee correctness and show how minimal input mesh quantization can be used to safely rely on computations with standard floating point numbers. We properly evaluate our method with respect to precision, robustness, and efficiency.  相似文献   

6.
This paper presents a novel segmentation method to assist the rigging of articulated bodies. The method computes a coarse‐to‐fine hierarchy of segments ordered by the level of detail. The results are invariant to deformations, and numerically robust to noise, irregular tessellations, and topological short‐circuits. The segmentation is based on two key ideas. First, it exploits the multiscale properties of the diffusion distance on surfaces, and then it introduces a new definition of medial structures, composing a bijection between medial structures and segments. Our method computes this bijection through a simple and fast iterative approach, and applies it to triangulated meshes.  相似文献   

7.
We present a registration algorithm for pairs of deforming and partial range scans that addresses the challenges of non‐rigid registration within a single non‐linear optimization. Our algorithm simultaneously solves for correspondences between points on source and target scans, confidence weights that measure the reliability of each correspondence and identify non‐overlapping areas, and a warping field that brings the source scan into alignment with the target geometry. The optimization maximizes the region of overlap and the spatial coherence of the deformation while minimizing registration error. All optimization parameters are chosen automatically; hand‐tuning is not necessary. Our method is not restricted to part‐in‐whole matching, but addresses the general problem of partial matching, and requires no explicit prior correspondences or feature points. We evaluate the performance and robustness of our method using scan data acquired by a structured light scanner and compare our method with existing non‐rigid registration algorithms.  相似文献   

8.
Recently, automatic 3D caricature generation has attracted much attention from both the research community and the game industry. Machine learning has been proven effective in the automatic generation of caricatures. However, the lack of 3D caricature samples makes it challenging to train a good model. This paper addresses this problem by two steps. First, the training set is enlarged by reconstructing 3D caricatures. We reconstruct 3D caricatures based on some 2D caricature samples with a Principal Component Analysis (PCA)‐based method. Secondly, between the 2D real faces and the enlarged 3D caricatures, a regressive model is learnt by the semi‐supervised manifold regularization (MR) method. We then predict 3D caricatures for 2D real faces with the learnt model. The experiments show that our novel approach synthesizes the 3D caricature more effectively than traditional methods. Moreover, our system has been applied successfully in a massive multi‐user educational game to provide human‐like avatars.  相似文献   

9.
We study an algorithmic framework for computing an elastic orientation‐preserving matching of non‐rigid 3D shapes. We outline an Integer Linear Programming formulation whose relaxed version can be minimized globally in polynomial time. Because of the high number of optimization variables, the key algorithmic challenge lies in efficiently solving the linear program. We present a performance analysis of several Linear Programming algorithms on our problem. Furthermore, we introduce a multiresolution strategy which allows the matching of higher resolution models.  相似文献   

10.
We present a robust and efficient algorithm for the pairwise non‐rigid registration of partially overlapping 3D surfaces. Our approach treats non‐rigid registration as an optimization problem and solves it by alternating between correspondence and deformation optimization. Assuming approximately isometric deformations, robust correspondences are generated using a pruning mechanism based on geodesic consistency. We iteratively learn an appropriate deformation discretization from the current set of correspondences and use it to update the correspondences in the next iteration. Our algorithm is able to register partially similar point clouds that undergo large deformations, in just a few seconds. We demonstrate the potential of our algorithm in various applications such as example based articulated segmentation, and shape interpolation.  相似文献   

11.
In this paper, we describe a novel approach for the reconstruction of animated meshes from a series of time‐deforming point clouds. Given a set of unordered point clouds that have been captured by a fast 3‐D scanner, our algorithm is able to compute coherent meshes which approximate the input data at arbitrary time instances. Our method is based on the computation of an implicit function in ?4 that approximates the time‐space surface of the time‐varying point cloud. We then use the four‐dimensional implicit function to reconstruct a polygonal model for the first time‐step. By sliding this template mesh along the time‐space surface in an as‐rigid‐as‐possible manner, we obtain reconstructions for further time‐steps which have the same connectivity as the previously extracted mesh while recovering rigid motion exactly. The resulting animated meshes allow accurate motion tracking of arbitrary points and are well suited for animation compression. We demonstrate the qualities of the proposed method by applying it to several data sets acquired by real‐time 3‐D scanners.  相似文献   

12.
Given a 3D solid model S represented by a tetrahedral mesh, we describe a novel algorithm to compute a hierarchy of convex polyhedra that tightly enclose S. The hierarchy can be browsed at interactive speed on a modern PC and it is useful for implementing an intuitive feature selection paradigm for 3D editing environments. Convex parts often coincide with perceptually relevant shape components and, for their identification, existing methods rely on the boundary surface only. In contrast, we show that the notion of part concavity can be expressed and implemented more intuitively and efficiently by exploiting a tetrahedrization of the shape volume. The method proposed is completely automatic, and generates a tree of convex polyhedra in which the root is the convex hull of the whole shape, and the leaves are the tetrahedra of the input mesh. The algorithm proceeds bottom‐up by hierarchically clustering tetrahedra into nearly convex aggregations, and the whole process is significantly fast. We prove that, in the average case, for a mesh of n tetrahedra O(n log2 n) operations are sufficient to compute the whole tree.  相似文献   

13.
Recently, approaches have been put forward that focus on the recognition of mesh semantic meanings. These methods usually need prior knowledge learned from training dataset, but when the size of the training dataset is small, or the meshes are too complex, the segmentation performance will be greatly effected. This paper introduces an approach to the semantic mesh segmentation and labeling which incorporates knowledge imparted by both segmented, labeled meshes, and unsegmented, unlabeled meshes. A Conditional Random Fields (CRF) based objective function measuring the consistency of labels and faces, labels of neighbouring faces is proposed. To implant the information from the unlabeled meshes, we add an unlabeled conditional entropy into the objective function. With the entropy, the objective function is not convex and hard to optimize, so we modify the Virtual Evidence Boosting (VEB) to solve the semi‐supervised problem efficiently. Our approach yields better results than those methods which only use limited labeled meshes, especially when many unlabeled meshes exist. The approach reduces the overall system cost as well as the human labelling cost required during training. We also show that combining knowledge from labeled and unlabeled meshes outperforms using either type of meshes alone.  相似文献   

14.
We introduce a novel notion, that we call discrete distortion, for a triangulated 3‐manifold. Discrete distortion naturally generalizes the notion of concentrated curvature defined for triangulated surfaces and provides a powerful tool to understand the local geometry and topology of 3‐manifolds. Discrete distortion can be viewed as a discrete approach to Ricci curvature for singular flat manifolds. We distinguish between two kinds of distortion, namely, vertex distortion, which is associated with the vertices of the tetrahedral mesh decomposing the 3‐manifold, and bond distortion, which is associated with the edges of the tetrahedral mesh. We investigate properties of vertex and bond distortions. As an example, we visualize vertex distortion on manifold hypersurfaces in R4 defined by a scalar field on a 3D mesh. distance fields.  相似文献   

15.
We propose a connectivity editing framework for quad‐dominant meshes. In our framework, the user can edit the mesh connectivity to control the location, type, and number of irregular vertices (with more or fewer than four neighbors) and irregular faces (non‐quads). We provide a theoretical analysis of the problem, discuss what edits are possible and impossible, and describe how to implement an editing framework that realizes all possible editing operations. In the results, we show example edits and illustrate the advantages and disadvantages of different strategies for quad‐dominant mesh design.  相似文献   

16.
Feature detection in geometric datasets is a fundamental tool for solving shape matching problems such as partial symmetry detection. Traditional techniques usually employ a priori models such as crease lines that are unspecific to the actual application. Our paper examines the idea of learning geometric features. We introduce a formal model for a class of linear feature constellations based on a Markov chain model and propose a novel, efficient algorithm for detecting a large number of features simultaneously. After a short user‐guided training stage, in which one or a few example lines are sketched directly onto the input data, our algorithm automatically finds all pieces of geometry similar to the marked areas. In particular, the algorithm is able recognize larger classes of semantically similar but geometrically varying features, which is very difficult using unsupervised techniques. In a number of experiments, we apply our technique to point cloud data from 3D scanners. The algorithm is able to detect features with very low rates of false positives and negatives and to recognize broader classes of similar geometry (such as “windows” in a building scan) even from few training examples, thereby significantly improving over previous unsupervised techniques.  相似文献   

17.
18.
Typically, flow volumes are visualized by defining their boundary as iso‐surface of a level set function. Grid‐based level sets offer a good global representation but suffer from numerical diffusion of surface detail, whereas particle‐based methods preserve details more accurately but introduce the problem of unequal global representation. The particle level set (PLS) method combines the advantages of both approaches by interchanging the information between the grid and the particles. Our work demonstrates that the PLS technique can be adapted to volumetric dye advection via streak volumes, and to the visualization by time surfaces and path volumes. We achieve this with a modified and extended PLS, including a model for dye injection. A new algorithmic interpretation of PLS is introduced to exploit the efficiency of the GPU, leading to interactive visualization. Finally, we demonstrate the high quality and usefulness of PLS flow visualization by providing quantitative results on volume preservation and by discussing typical applications of 3D flow visualization.  相似文献   

19.
We present a method for generating scales and scale‐like structures on a polygonal mesh through surface replacement. As input, we require a triangular mesh that will be covered with scales and one or more proxy‐models to be used as the scale's shape. A user begins scale generation by drawing a lateral line on the model to control the distribution and orientation of scales on the surface. We then create a vector field over the surface to control an anisotropic Voronoi tessellation, which represents the region occupied by each scale. Next we replace these regions by cutting the proxy model to match the boundary of the Voronoi region and deform the cut model onto the surface. The result is a fully connected 2‐manifold that is suitable for subsequent post‐processing applications like surface subdivision.  相似文献   

20.
This paper proposes new methodology for the detection and matching of salient points over several views of an object. The process is composed by three main phases. In the first step, detection is carried out by adopting a new perceptually‐inspired 3D saliency measure. Such measure allows the detection of few sparse salient points that characterize distinctive portions of the surface. In the second step, a statistical learning approach is considered to describe salient points across different views. Each salient point is modelled by a Hidden Markov Model (HMM), which is trained in an unsupervised way by using contextual 3D neighborhood information, thus providing a robust and invariant point signature. Finally, in the third step, matching among points of different views is performed by evaluating a pairwise similarity measure among HMMs. An extensive and comparative experimental session has been carried out, considering real objects acquired by a 3D scanner from different points of view, where objects come from standard 3D databases. Results are promising, as the detection of salient points is reliable, and the matching is robust and accurate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号