首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study is to assess pullulan as a novel steric stabilizer during the wet-stirred media milling (WSMM) of griseofulvin, a model poorly water-soluble drug, and as a film-former in the preparation of strip films via casting–drying the wet-milled drug suspensions for dissolution and bioavailability enhancement. To this end, pullulan films, with xanthan gum (XG) as thickening agent and glycerin as plasticizer, were loaded with griseofulvin nanoparticles prepared by WSMM using pullulan in combination with sodium dodecyl sulfate (SDS) as an ionic stabilizer. The effects of drug loading and milling time on the particle size and suspension stability were investigated, as well as XG concentration and casting thickness on film properties and dissolution rate. The nanosuspensions prepared with pullulan–SDS combination were relatively stable over 7 days; hence, this combination was used for the film preparation. All pullulan-based strip films exhibited excellent content uniformity (most?<3% RSD) despite containing only 0.3–1.3?mg drug, which was ensured by the use of precursor suspensions with?>5000 cP viscosity. USP IV dissolution tests revealed fast/immediate drug release (t80?相似文献   

2.
The objective of this study was to develop a novel patient compliant buccoadhesive film capable of providing a prolonged protection against allergic symptoms. Polymeric buccoadhesive films of loratidine were prepared using hydroxypropylmethyl cellulose (HPMC)-E5 and K100 blend and Eudragit® NE 30D as retardant. Films were prepared using solvent-casting method. The developed films were evaluated for physical properties, hydration, mucoadhesion time, drug release, etc. All the prepared films exhibited excellent mechanical strength and uniform drug content. Increase in drug content did not influence the physicomechanical properties of the film. The mucoadhesive strength of films was significantly enhanced with increase in HPMC content. Increase in Eudragit® NE 30 D content in the film decreases the hydration, erosion and drug release, but enhances the mucoadhesion time. Furthermore, the release of loratidine from the prepared films followed Hixson–Crowell kinetics. Studies in healthy human volunteers using placebo films indicate that the prepared films possess prolonged mucoadhesion in-vivo, and this could potentially lead to clinically relevant drug delivery system.  相似文献   

3.
Abstract

The mechanical properties of polymer films used in pharmaceutical coatings of pulsatile drug delivery systems were evaluated in the dry and the wet state by a newly developed puncture test, which allowed the time-dependent measurement of the mechanical properties on the same film specimen. Force, puncture strength, energy at break, modulus, and strain were investigated as a function of water exposure time with respect to the type of polymer and the type and concentration of plasticizer and pore former (hydroxypropyl methylcellulose, HPMC). Eudragit® RS films were very flexible, had a high strain, and broke upon puncture with only small cracks. In contrast, ethylcellulose films were more brittle with a lower strain and showed complete film rupture. Increased amounts of the hydrophilic pore former, HPMC, resulted in a reduced puncture strength and in an increase in water uptake and weight loss of the films. The puncture strength decreased with increasing plasticizer concentration and was lower with the lipophilic dibutyl sebacate than with the hydrophilic triethyl citrate.  相似文献   

4.
The mechanical properties of polymer films used in pharmaceutical coatings of pulsatile drug delivery systems were evaluated in the dry and the wet state by a newly developed puncture test, which allowed the time-dependent measurement of the mechanical properties on the same film specimen. Force, puncture strength, energy at break, modulus, and strain were investigated as a function of water exposure time with respect to the type of polymer and the type and concentration of plasticizer and pore former (hydroxypropyl methylcellulose, HPMC). Eudragit® RS films were very flexible, had a high strain, and broke upon puncture with only small cracks. In contrast, ethylcellulose films were more brittle with a lower strain and showed complete film rupture. Increased amounts of the hydrophilic pore former, HPMC, resulted in a reduced puncture strength and in an increase in water uptake and weight loss of the films. The puncture strength decreased with increasing plasticizer concentration and was lower with the lipophilic dibutyl sebacate than with the hydrophilic triethyl citrate.  相似文献   

5.
目的以魔芋葡苷聚糖(KGM)为基体,加入羟丙基甲基纤维素(HPMC)改性制备水溶性包装薄膜,探索HPMC改性后其力学性能最佳时HPMC的质量分数。方法通过将HPMC,KGM依次加入去离子水中制备共混溶液,再采用流延法制备薄膜,调节HPMC质量分数,测试并分析对薄膜结构和性能的影响。结果随着HPMC质量分数的增加,薄膜的拉伸强度和断裂伸长率呈先增大后减小的趋势,存在最大值;其水溶性基本呈逐渐降低的趋势,水溶性降低的幅度不大,仍能满足水溶性包装的需求;透光度逐渐升高,雾度逐渐降低,有利于应用在包装中。结论 HPMC和KGM质量分数为1%的成膜液,在HPMC质量分数为总量的20%时,薄膜力学性能较好。  相似文献   

6.
The concentration of hypromellose (HPMC) is known to significantly impact the viscosity of coating solutions. The purpose of this study was to determine the viscosity of novel low-molecular-weight (LMW) HPMC products as a function of polymer concentration. The mechanical properties and water vapor permeability of free films prepared from these novel LMW HPMC polymers were also determined and the results were compared with films prepared with conventional HPMC. Solutions of LMW and conventional HPMC 2910 and 2906 containing up to 40% polyethylene glycol (PEG) 400 were prepared and the viscosities were measured using a Brookfield viscometer. Solutions were then cast onto glass plates and stored at 30?C and 50% relative humidity until films were formed. A Chatillon digital force gauge attached to a motorized test stand was used to quantify the mechanical properties of the films, whereas water vapor permeabilities were determined according to the ASTM E96 M-05 water method. As expected, the novel LMW polymer solutions exhibited significantly lower viscosities than the conventional comparators at equivalent polymer concentrations. Film strength of the LMW materials was lower than films prepared from the conventional HPMC solutions, although this effect was not as evident for the HPMC 2906 chemistry. Increasing concentrations of the plasticizer resulted in decreased tensile strength and Young?s modulus and increased elongation as well as increased water vapor permeability, irrespective of polymer type. No statistical difference was found between the tensile strength to Young?s modulus ratios of the F chemistry LMW and conventional HPMC polymer films.  相似文献   

7.
The effect of different grades of hydroxyethyl cellulose (HEC) and hydroxypropyl methylcellulose (HPMC) on the film-formation and taste-masking ability for ibuprofen granules was evaluated. Three batches of coated ibuprofen granules were prepared using a roto-granulator, each with a different coating composition. Two grades of HEC [MW 300,000 (H) and MW 90,000 (L)] were combined with three different grades of HPMC [MW 11,000 (L), MW 25,000 (M) and MW 35,000 (H)] to prepare the coating solutions. Mechanical strength and physical properties of the polymer films were evaluated. Films made from HPMC (L)/HEC (H), HPMC (M)/HEC (H), and HPMC (H)/HEC (H) were stronger and more flexible than the HPMC (L)/HEC (L) films. The assay, dissolution, particle size distribution, and environmental scanning electron microscopy (ESEM) data of the three batches of the coated ibuprofen granules were similar. These data indicated that the two grades of HEC had equivalent film-coating properties. However, the HPMC (L)/HEC (L) film-coated granules showed better taste-masking characteristics (no burning after-taste) than the HPMC (L)/HEC (H) and HPMC (M)/HEC (H) film-coated granules. The ESEM data of the polymer films indicated that both HPMC (L)/HEC (H) and HPMC (M)/HEC (H) films exhibited more roughness and contained larger particles than the HPMC (L)/HEC (L) films. A hydration/dehydration study of the films revealed that HPMC (L)/HEC (H) and HPMC (M)/HEC (H) films were more susceptible to moisture effects, which subsequently led to a faster hydration rate of the polymer films. These data suggest that the molecular weight of the HEC affects the taste-masking ability of the resultant polymer film. The HEC (L) mixed well with the HPMC (L) to yield a uniform film that was more resistant to moisture effects. Hence, for optimum coating applications, particular attention should be paid to the molecular weight of the coating polymers to ensure that they are comparable to each other.  相似文献   

8.
ABSTRACT

The effect of different grades of hydroxyethyl cellulose (HEC) and hydroxypropyl methylcellulose (HPMC) on the film-formation and taste-masking ability for ibuprofen granules was evaluated. Three batches of coated ibuprofen granules were prepared using a roto-granulator, each with a different coating composition. Two grades of HEC [MW 300,000 (H) and MW 90,000 (L)] were combined with three different grades of HPMC [MW 11,000 (L), MW 25,000 (M) and MW 35,000 (H)] to prepare the coating solutions. Mechanical strength and physical properties of the polymer films were evaluated. Films made from HPMC (L)/HEC (H), HPMC (M)/HEC (H), and HPMC (H)/HEC (H) were stronger and more flexible than the HPMC (L)/HEC (L) films. The assay, dissolution, particle size distribution, and environmental scanning electron microscopy (ESEM) data of the three batches of the coated ibuprofen granules were similar. These data indicated that the two grades of HEC had equivalent film-coating properties. However, the HPMC (L)/HEC (L) film-coated granules showed better taste-masking characteristics (no burning after-taste) than the HPMC (L)/HEC (H) and HPMC (M)/HEC (H) film-coated granules. The ESEM data of the polymer films indicated that both HPMC (L)/HEC (H) and HPMC (M)/HEC (H) films exhibited more roughness and contained larger particles than the HPMC (L)/HEC (L) films. A hydration/dehydration study of the films revealed that HPMC (L)/HEC (H) and HPMC (M)/HEC (H) films were more susceptible to moisture effects, which subsequently led to a faster hydration rate of the polymer films. These data suggest that the molecular weight of the HEC affects the taste-masking ability of the resultant polymer film. The HEC (L) mixed well with the HPMC (L) to yield a uniform film that was more resistant to moisture effects. Hence, for optimum coating applications, particular attention should be paid to the molecular weight of the coating polymers to ensure that they are comparable to each other.  相似文献   

9.
The adhesion between aqueous-based hydroxypropyl methylcellulose (HPMC) films and tablet surface was evaluated using a Lloyd LRX materials testing machine. Special attention was paid to the effects of compression pressure and the excipients (microcrystalline cellulose, lactose and a commercial combination of lactose and cellulose (CellactoseR)) on the adhesion properties of the film.

The adhesion of HPMC films was the lowest for the tablets containing lactose as a diluent and the highest for the tablets containing microcrystalline cellulose. The adhesion to CellactoseR-based tablets increased with increasing compression pressure. With microcrystalline cellulose (MCC) and lactose, the effect of compression pressure on film adhesion was not so clear. The increase in concentration of a hydrophopic lubricant, magnesium stearate, decreased the adhesion between the films and tablets cores. The greatest decrease was observed with the MCC tablets.

Furthermore the results showed that, the film coating increased clearly the mechanical strength of the tablets, depending on the excipient, the compression pressure and amount of magnesium stearate.  相似文献   

10.
Nowadays, oral dosage forms with controlled release kinetics have known an increasing interest. The polymer coating of drug-loaded particles is one of the most common methods used for controlling drug delivery. Such multilayered particles could be either filled into capsules or compressed into tablets for their oral administration. However, many studies have noticed that coating films are damaged during the compression process, leading to significant changes in drug release profiles. The aims of this study were to investigate the effects of a thin cushioning layer [made of HydroxyPropylMethyl Cellulose (HPMC)] applied on coated theophylline particles upon particle characteristics, tablet properties, and then upon their dissolution performance. If no significant effect was shown with particles, this thin HPMC layer played an important role in the tablets. Tablet cohesiveness was decreased due to HPMC cushioning properties and moreover, the theophylline release rate was increased, as HPMC is a water-soluble polymer creating channels in polymer film for dissolution medium. Therefore, a cushioning layer helped to protect polymer coats from fracture during compression but could also affect drug release and so, both effects must be checked in such a drug delivery system.  相似文献   

11.
ABSTRACT

Nowadays, oral dosage forms with controlled release kinetics have known an increasing interest. The polymer coating of drug-loaded particles is one of the most common methods used for controlling drug delivery. Such multilayered particles could be either filled into capsules or compressed into tablets for their oral administration. However, many studies have noticed that coating films are damaged during the compression process, leading to significant changes in drug release profiles. The aims of this study were to investigate the effects of a thin cushioning layer [made of HydroxyPropylMethyl Cellulose (HPMC)] applied on coated theophylline particles upon particle characteristics, tablet properties, and then upon their dissolution performance. If no significant effect was shown with particles, this thin HPMC layer played an important role in the tablets. Tablet cohesiveness was decreased due to HPMC cushioning properties and moreover, the theophylline release rate was increased, as HPMC is a water-soluble polymer creating channels in polymer film for dissolution medium. Therefore, a cushioning layer helped to protect polymer coats from fracture during compression but could also affect drug release and so, both effects must be checked in such a drug delivery system.  相似文献   

12.
The influence of fillers and polymeric films on adhesive strength of hydroxypropyl methylcellulose (HPMC) and Eudragit E100® films coated on ranitidine HCl tablets containing either spray-dried rice starch (SDRS) or lactose monohydrate as fillers after storage at 45°C/75% RH for four weeks was investigated by the use of butt adhesion technique. The adhesive strength of film-coated tablets of fillers without drug was found to slightly decrease after storage. In contrast, the adhesive strength of drug-containing film-coated tablets significantly reduced, the degree of which was higher for Eudragit E100® than HPMC. Physicochemical characterization by employing differential scanning calorimetry (DSC) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) revealed that the drug was obviously incompatible with lactose and possibly mild interaction with Eudragit E100® was suggested. The results indicated that the adhesive strength of film-coated tablets would be affected not only by the drug-excipient interaction, but also by the drug-polymeric film interaction.  相似文献   

13.
14.
ABSTRACT

The influence of fillers and polymeric films on adhesive strength of hydroxypropyl methylcellulose (HPMC) and Eudragit E100® films coated on ranitidine HCl tablets containing either spray-dried rice starch (SDRS) or lactose monohydrate as fillers after storage at 45°C/75% RH for four weeks was investigated by the use of butt adhesion technique. The adhesive strength of film-coated tablets of fillers without drug was found to slightly decrease after storage. In contrast, the adhesive strength of drug-containing film-coated tablets significantly reduced, the degree of which was higher for Eudragit E100® than HPMC. Physicochemical characterization by employing differential scanning calorimetry (DSC) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) revealed that the drug was obviously incompatible with lactose and possibly mild interaction with Eudragit E100® was suggested. The results indicated that the adhesive strength of film-coated tablets would be affected not only by the drug-excipient interaction, but also by the drug-polymeric film interaction.  相似文献   

15.
Abstract

Hydroxypropyl methylcelluose phthalate 50 (HPMCP 50) was evaluated as a film forming polymer from aqueous dispersion systems. The influence of plasticizer type and level on the elasticity of HPMCP 50 free films prepared by the casting method was studied by measuring Young's modulus using an Instron Material Testing System. The release of a water soluble drug in various dissolution media from pellets coated with HPMCP 50 with 30% plasticizer containing various levels of hydroxypropyl cellulose (HPC) or hydroxypropyl methylcellulose (HPMC) was also studied. The influence of coating level on drug release from pellets was also investigated. Results showed that HPMCP 50 alone without a plasticizer does not form a film. However, when a plasticizer was added HPMCP 50 did form a film. Also, as the concentration of the plasticizer triethyl citrate was increased the elasticity of HPMCP 50 films was increased. Similar results were obtained with the plasticizer diethyl phthalate. For pellets a high coating level was required to achieve adequate protection in 0.06 N HCl. Drug release from coated pellets was found to be dependent upon the type and the level of the water soluble polymer incorporated with HPMCP 50. Drug release was increased as the percentage of HPC was increased. Higher release rates were obtained with HPMC compared to HPC. Coating level significantly influenced drug release in 0.06 N HCl; however, less of an effect was observed at pH 5.5.  相似文献   

16.
The film-forming properties of chitosan, chitosan glutamate, sodium alginate, and hydroxypropyl methylcellulose (HPMC) were investigated. Films were produced by a casting/solvent evaporation method from plasticizer-free and plasticizer-containing aqueous solutions. The water vapor transmission and mechanical properties (puncture strength and % elongation) of the films were investigated as a function of the polymer type and viscosity, plasticizer type (glycerin, propylene glycol, polyethylene glycol, triethyl citrate), plasticizer concentration, and type and concentration of acid used to dissolve chitosan. The effect of storage humidity was also examined. Glycerin and water were good plasticizers for chitosan glutamate. The chitosan film properties were dependent on the type and concentration of acid used to dissolve it, citric acid being a good plasticizer. The mechanical and water vapor transmission properties of alginate and HPMC films were less influenced by the investigated variables.  相似文献   

17.
The aim of the present study is to develop cross-linked chitosan (CH) films that can release drug over an extended period of time and that too in a controlled manner. A solution of different percentages of CH, is prepared in 1% lactic acid, followed by addition of citalopram (CTP) and then reacted with increasing amounts of glutaraldehyde (GL) to obtain films with different cross-linking densities. Prepared films are characterized for their physical and mechanical properties. The films are then subjected to in vitro drug release studies using pH 7·4 phosphate buffer saline (PBS) as dissolution medium and cumulative amount of drug released is calculated. Kinetic analysis of drug release is performed using Power law model and Higuchi’s model. With increase in concentration of CH, water absorption capacity and mechanical strength are increased; whereas, water vapour permeability and elasticity of the films are decreased. The effect of cross-linking agent, GL, is such that with an increase in the amount of GL, water vapour permeability, water absorption capacity and elasticity of the films are decreased; whereas, mechanical strength increased to some extent and then decreased. In vitro release studies indicate that films containing 3% CH, cross-linked with 2–3% GL and films containing 4% CH, cross-linked 1% GL are able to sustain the drug release for a prolonged time along with releasing almost complete drug in a desired period. Out of these batches, films containing 3% CH, cross-linked with 2–3% GL are having sufficient strength, water vapour permeation, water absorption capacity and elongation at break for implantation purpose. The in vitro degradation studies and histopathological studies were carried out with a sample film (batch C3 as in table 1) in rabbit model. In vitro degradation study indicates that the films maintained their integrity for desired implantation. The histopathological studies under optical microscope indicates that on implanting, there is no evidence of any inflammation, any foreign body granuloma or any necrosis or hemorrhage. Tissue configuration remains unaltered after 30 days of implantation. So, it can be suggested that cross-linked CH films of above said composition can be used as implant for long term application in depression and related disorders.  相似文献   

18.
Hydroxypropyl methylcelluose phthalate 50 (HPMCP 50) was evaluated as a film forming polymer from aqueous dispersion systems. The influence of plasticizer type and level on the elasticity of HPMCP 50 free films prepared by the casting method was studied by measuring Young's modulus using an Instron Material Testing System. The release of a water soluble drug in various dissolution media from pellets coated with HPMCP 50 with 30% plasticizer containing various levels of hydroxypropyl cellulose (HPC) or hydroxypropyl methylcellulose (HPMC) was also studied. The influence of coating level on drug release from pellets was also investigated. Results showed that HPMCP 50 alone without a plasticizer does not form a film. However, when a plasticizer was added HPMCP 50 did form a film. Also, as the concentration of the plasticizer triethyl citrate was increased the elasticity of HPMCP 50 films was increased. Similar results were obtained with the plasticizer diethyl phthalate. For pellets a high coating level was required to achieve adequate protection in 0.06 N HCl. Drug release from coated pellets was found to be dependent upon the type and the level of the water soluble polymer incorporated with HPMCP 50. Drug release was increased as the percentage of HPC was increased. Higher release rates were obtained with HPMC compared to HPC. Coating level significantly influenced drug release in 0.06 N HCl; however, less of an effect was observed at pH 5.5.  相似文献   

19.
Background: Unknown influence of cyclodextrin on the properties of the film formulation aimed for buccal application. Aim: Development and characterization of a novel bioadhesive film formulation for buccal atenolol delivery containing drug/cyclodextrin inclusion. Method: Interaction between atenolol and randomly methylated β-cyclodextrin (RAMEB) in solution was studied by phase solubility studies. The complex in solid state was prepared by the freeze-drying method and characterized by differential scanning calorimetry and Fourier-transformed infrared spectroscopy (FTIR). The drug, free or in complex form, was incorporated into polymeric films prepared by the casting method using ethylcellulose (EC), polyvinyl alcohol (PVA), and hydroxypropyl methylcellulose (HPMC). The prepared film formulations were characterized in terms of swelling, bioadhesion, and in vitro drug release. Results: The formation of a stabile inclusion complex (Ks = 783.4?±?21.6 M?1) in 1:1 molar stoichiometry was confirmed in solution and in solid state. The swelling properties of films were predominated by the type of polymer used in the formulation. In vitro bioadhesive properties of the films were well correlated with the swelling properties of the polymers used in the formulation. Although incorporation of the drug, free or in complex form, decreased the bioadhesion of the films, PVA- and HPMC-based formulations retained suitable bioadhesive properties. Higher atenolol solubility upon complexation with RAMEB increased the drug dissolution rate under conditions designed to be similar to those on the buccal mucosa, but it has decreased the drug release rate from the PVA and HPMC film formulation, leading to a sustained drug release pattern. In the case of EC-based films, RAMEB promoted drug release. Other parameters that influenced the drug release rate were associated with the structure of the polymer used in the formulation, swelling characteristics of the films, and the interaction between atenolol and hydrophilic polymers that was demonstrated by FTIR analysis. Conclusion: Incorporation of atenolol in the form of an inclusion complex into hydrophilic films may be an appropriate strategy to prepare a suitable formulation for buccal drug delivery.  相似文献   

20.
ABSTRACT

Co-ground powders of the poorly water-soluble drug nifedipine and a hydrophilic carrier, [partially hydrolyzed gelatin (PHG), polyvinylpyrrolidone (PVP), sodium dodecyl sulfate (SDS), hydroxypropyl methylcellulose (HPMC), polyethylene glycol (PEG), urea or Pluronic F108] were prepared in order to improve the dissolution rate of nifedipine. The effects of type of grinding equipment, grinding time, and type of hydrophilic carrier on the crystallinity of nifedipine (x-ray diffraction and differential scanning calorimetry) on the interaction between drug and carriers (differential scanning calorimetry), on the particle size and appearance (scanning electron microscopy), on the wettability (contact angle measurements), and on the drug release were investigated. Grinding nifedipine together with these carriers improved the dissolution rate. PHG-ground mixtures resulted in the fastest dissolution rate followed by PVP, SDS, HPMC, Pluronic, urea, and PEG. This effect was not only due to particle size reduction, which increased in the order PHG < PEG = SDS < Pluronic < drug < urea < HPMC < PVP, but also resulted from the ability of some carriers (PVP and HPMC) to prevent reaggregation of the finely divided drug particles. PVP, HPMC, and PHG formed a powder with amorphous drug. The carriers improved the wettability of the ground products in the order HPMC < drug < urea < PVP < SDS < PHG < PEG < Pluronic. Differential scanning calorimetry (DSC) measurements gave valuable information about the nature of drug crystallinity and the interactions with the carriers within the ground mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号