首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of reduction of Pu(IV) and Np(VI) with butanal oxime in undiluted TBP containing HNO3 was studied spectrophotometrically. In the range [HNO3] = 0.08-0.75 M the rate of Pu(IV) reduction is described by the equation -d[Pu(IV)]/dt = k[Pu(IV)]2[C3H7CHNOH]/{[Pu(III)][HNO3]2} with the rate constant k = 0.068±0.017 mol l-1 min-1 at 20°C. The kinetic equation of the reduction of Np(VI) to Np(V) in the range [HNO3] = 0.01-0.27 M is -d[Np(VI)]/dt = k[Np(VI)][C3H7CHNOH][H2O]2/[HNO3]0.5, where k = 0.058±0.007 l2.5 mol-2.5 min-1 at 25°C, and the activation energy is 79±9 kJ mol-1.  相似文献   

2.
The interaction of An(IV) ions (An = Th, U, Np, Pu) with 2,6-pyridinedicarboxylic acid (2,6-PDCA) in solutions was studied by spectrophotometry. The electronic absorption spectra of the individual complex species An(PDC)2+, An(PDC)2, and An(PDC) 3 2? (PDC2? is 2,6-PDCA anion; An = U, Np, Pu) were obtained. At [2,6-PDCA] ? 3[An(IV)] + 0.01 M and [H+] ? 0.2 M, the prevalent An(IV) species are the complexes An(PDC) 3 2? . Their overall stability constant exceeds 1025 L3 mol?3 and increases in the series from Th(IV) to Pu(IV) by ~8 orders of magnitude. Very high stability of An(IV) complexes with 2,6-PDCA anions leads to significant shifts of the redox potentials of couples involving An(IV). In particular, large difference in the stability of An(III) and An(IV) complexes is responsible for the fact that Pu(III) in the presence of 2,6-PDCA is readily oxidized with atmospheric oxygen to Pu(IV).  相似文献   

3.
Decomposition of hydroxylamine in HNO3 solutions containing 350 to 920 g l?1 U(VI) was studied. In the absence of fission and corrosion products (Zr, Pd, Tc, Mo, Fe, etc.), hydroxylamine is stable for no less than 6 h at [HNO3] < 1 M and 60°C. In the presence of these products, the stability of hydroxylamine appreciably decreases. The reduction of Pu(IV) and Np(VI) with hydroxylamine in aqueous 0.33 and 0.5 M HNO3 solutions containing 850 g l?1 U(VI) and fission and corrosion products at 60°C was studied. Np(VI) is rapidly reduced to Np(V), after which Np(V) is partially reduced to Np(IV). The rate of the latter reaction in such solutions is considerably higher than the rate of the Np(V) reduction with hydroxylamine in HNO3 solutions without U(VI). At [HNO3] = 0.33 M, the use of hydroxylamine results in the conversion of Pu to Pu(III) and of Np to a Np(IV,V) mixture, whereas at [HNO3] = 0.5 M the final products are Pu(IV) and Np(V).  相似文献   

4.
Koltunov  V. S.  Baranov  S. M.  Pastushchak  V. G. 《Radiochemistry》2002,44(6):541-545
3,3'-Bis(diaziridinyl), H2N2C2H2N2H2, is oxidized with Pu(IV) ions in excess of reductant to bis(diazirinyl), N2C2H2N2, and in excess of oxidant, to nitrogen and acetic acid. The reaction rate in the HNO3 solution at a constant ionic strength is described by the equation -d[Pu(IV)]/dt = k[Pu(IV)]2× [H2N2C2H2N2H2]1 . 7[H+]- 3, where k = 28400±1400 mol0 . 3 l- 0 . 3 min- 1 at 35°C. The activation energy of the reaction amounts to 126±11 kJ mol- 1.  相似文献   

5.
The behavior of Pu(VI) and Pu(V) in CH3COOH (HAc)-H2O solutions was studied by spectrophotometry. The absorption spectrum of Pu(VI) does not change on adding HAc to a concentration of 5 M in the presence of 0.5–1.0 M HClO4, but in solutions containing less than 0.001 M mineral acid, changes in the spectrum are observed at HAc concentration of 0.6 M.he major absorption band of PuO 2 2+ ions, caused by an f-f transition, with increasing [HAc] is shifted from 830.6 to 836 nm, with a simultaneous decrease in the absorption intensity, which is due to formation of 1: 1 complexes of Pu(VI) with Ac? ions. In anhydrous HAc, the peak intensity increases again, owing to total change in the composition of the solvation shell. Pu(V) is unstable in 1–17 M HAc solutions and disproportionates to form Pu(VI) and Pu(IV). The Pu(V) loss follows a second-order rate law with respect to [Pu(V)] and accelerates with increasing HAc concentration. The reaction products exert opposite effects on the reaction rate: Pu(IV) accelerates the consumption of Pu(V), whereas Pu(VI) does not affect the process in dilute HAc solutions but decelerates the disproportionation in concentrated solutions owing to formation of a cation-cation complex with Pu(V).  相似文献   

6.
The reduction of Pu(IV) with butanal oxime in nitric acid solution in the presence of excess reductant follows the equation 4Pu4 + + 2C3H7CHNOH + H2O = 4Pu3 + + 2C3H7CHO + N2O + 4H+, and its rate is given by the equation -d[Pu(IV)]/dt = k[Pu(IV)]2[C3H7CHNOH]/{[Pu(III)][H+]}. The rate constant is k = 3.65±0.14 min- 1 at 20.2°C and the solution ionic strength = 2. The activation energy is E = 88.8±10.3 kJ mol- 1. The probable reaction mechanism is discussed.  相似文献   

7.
The kinetics and stoichiometry of the reaction of Np(VI) with H2O2 in carbonate solutions were studied by spectrophotometry. In the range 1–0.02 M Na2CO3, the reaction 2Np(VI) + H2O2 = 2Np(V) + O2 occurs, as Δ[Np(VI)]/Δ[H2O2] ≈ 2. In Na2CO3 + NaHCO3 solutions, the stoichiometric coefficient decreases, which is caused by side reactions. The reduction at low (1 mM) concentrations of Np(VI) and H2O2 follows the first-order rate law with respect to Np(VI), which suggests the formation of a Np(VI) peroxide-carbonate complex, followed by intramolecular charge transfer. Addition of Np(V) in advance decreases the reaction rate. An increase in the H2O2 concentration leads to the reaction deceleration owing to formation of a complex with two peroxy groups. In a 1 M Na2CO3 solution containing 1 mM H2O2, the first-order rate constant k increases with a decrease in [Np(VI)] from 2 to 0.1 mM. For solutions with [Np(VI)] = [H2O2] = 1 mM, k passes through a minimum at [Na2CO3] = 0.5–0.1 M. The activation energy in a 0.5 M Na2CO3 solution is 48 kJ mol−1.  相似文献   

8.
Reactions of Pu(IV) and Np(VI) with organic reducing agents of various types (substituted hydroxylamines, oximes, aldehydes, etc.) in tributyl phosphate solutions containing nitric acid were studied spectrophotometrically. The molar extinction coefficients of neptunium and plutonium in various oxidation states [Np(IV,V,VI), Pu(III,IV,VI)] in TBP solutions were determined as influenced by HNO3 and H2O concentrations and temperature. It was found that organic reducing agents at low HNO3 concentration convert plutonium and neptunium to Pu(III) and Np(V), respectively. With increasing HNO3 concentration Pu(III) and Np(V) are partly oxidized back to Pu(IV) and Np(VI), respectively, by reaction with nitrous acid. The rate constants of Pu(VI) and Np(VI) reduction and Np(V) oxidation as influenced by concentration of organic reducing agents and HNO3 were evaluted from the kinetic data.  相似文献   

9.
The behavior of Pu(VI), Pu(V), and Pu(IV) in the HCOOH-H2O system was studied by spectrophotometry. The Pu(VI) absorption spectrum in solutions containing less than 1 mM HClO4 changes on adding HCOOH to a concentration of 0.53 M. Along with a decrease in the intensity of the absorption maximum at 830.6 nm, corresponding to an f-f transition in the Pu22+ aqua ion, a new band arises with the maximum shifted to 834.5 nm. These transformations are due to formation of a Pu(VI) formate complex (1: 1). The Pu(IV) absorption spectra in HCOOH solutions vary insignificantly in going from 3.0 to 9.0 M HCOOH and are similar to the spectrum of Pu(IV) in a 0.88 M HCOOH + 0.41 M NaHCOO + 0.88 M NaClO4 solution, which indicates that the composition of the Pu(IV) formate complexes is constant. Pu(V) is unstable in HCOOH solutions and disproportionates to form Pu(VI) and Pu(IV). The reaction rate is approximately proportional to [Pu(V)]2 and grows with an increase in [HCOOH]. The reaction products affect the reaction rate: Pu(IV) accelerates the process, and Pu(VI) decelerates the consumption of Pu(V) by binding Pu(V) in a cationcation complex. The disproportionation occurs via formation of a Pu(V)-Pu(V) cation-cation complex whose thermal excitation yields an activated complex with its subsequent decomposition to Pu(VI) and Pu(IV).  相似文献   

10.
At a weight fraction below 20%, Pu(IV) nitrate is isomorphically dissolved and homogeneously distributed in the uranyl nitrate hexahydrate phase, the solubility being independent of the HNO3 concentration in the mixed U-Pu melt up to the acid concentration of 7 M. In dissolving solid Pu(IV) nitrate in 1–6 M HNO3, Pu(IV) disproportionates to form Pu(III) and Pu(VI). With increasing HNO3 concentration to above 10 M, Pu(IV) passes into solution as Pu(NO3) 6 2? , and no disproportionation is observed.  相似文献   

11.
Pu(IV) is reduced to Pu(III) in nitric acid solutions with formic acid in the presence of urea and 1% Pt/SiO2 catalyst. The kinetics of reduction were studied in 0.3-2.3 M HNO3 containing 0.2-1 M HCOOH, 0.1-0.5 M (NH2)2CO, and 0.01-0.1 g ml- 1 of 1% Pt/SiO2 at 30-60°C. At HNO3 concentration higher than 2 M, the Pu(IV) reduction is reversible because of catalytic decomposition of urea. The reduction mechanism is discussed.  相似文献   

12.
Published data on reactions of Np ions with O2, H2O2, HNO2, and HNO3 in solutions of various compositions in a wide pH range are considered. O2 oxidizes Np(III) in acid solution and Np(IV) and Np(V) in alkaline solutions. H2O2 exhibits dual behavior. In weakly acidic solutions, it converts Np(III) and (IV) to Np(V), in 0.75?C1 M NaHCO3 it oxidizes Np(V) to Np(VI), whereas in dilute HClO4 and HNO3 and in carbonate and alkali solutions it reduces Np(VI), and in alkali solutions it reduces Np(VII). The first step of reduction in most cases is the formation of the Np(VI) peroxide complex, and the next step is the intramolecular charge transfer. In concentrated HNO3 solutions, H2O2 converts Np(V) to Np(IV) and Np(VI) and then reduces Np(VI). Some radiation-, photo-, and sonochemical reactions occur via formation of excimers, i.e., of dimers arising from excited and unexcited Np ions. The excimer decomposes into two ions with higher and lower oxidation states. In reduction reactions, the excimer eliminates H2O2 (in addition to the H2O2 arising as primary product of water radiolysis). In HNO3 solutions, oxidation of Np ions occurs only in the presence of HNO2 arising as reaction product or upon radiolysis, photolysis, or sonolysis. The active species are NO 2 ? , NO2, and NO+ present in equilibrium with HNO2.  相似文献   

13.
Oxidation of U(IV) with nitric acid in 30% solution of TBP in n-dodecane is catalyzed by Tc ions; the rate-determining steps are 3U(IV) + 2Tc(VII) → 3U(VI) + 2Tc(IV) and Tc(IV) + Tc(VII) → Tc(V) + Tc(VI). Oxidation of U(IV) is inhibited by the reaction product, HNO2, which partially binds Tc(IV) ions (TcO2+) in an inert complex. The overall rate equation of U(IV) oxidation is-d[U(IV)]/dt = k 1[U(IV)][Tc][HNO3]?3 ? k 4[U(IV)]2[HNO2]2[HNO3]?1, where k 1 = 4.8 ± 1.0 mol21?2 min?1 and k 4 = (2.4 ± 1.0) × 105 12 mol?2 min?1 at 25°C, [H2O] = 0.4 M ([Tc] is the total Tc concentration in the reaction mixture). Water and U(VI) have no effect on the reaction rate.  相似文献   

14.
The rate of Pu(IV) reduction with tert-butylhydrazine in an HNO3 solution is described by the equation-d[Pu(IV)]/dt = k[Pu(IV)]2[(CH3)3CN2H 4 + ]/[H+], where k = 69.4 ⊥ 3.0 l mol?1 min?1 at 50°C. The activation energy is E = 122 ⊥ 4 kJ mol?1. Probable reaction mechanisms are discussed.  相似文献   

15.
In a perchloric acid solution, XeO3 does not oxidize Pu(IV), but the addition of H2O2 leads to the accumulation of Pu(VI). It is assumed that Pu(IV) forms a complex with XeO3. The reaction of the complex with hydrogen peroxide generates OH radicals, which oxidize Pu(IV) to Pu(V). The latter disproportionates to Pu(IV) and Pu(VI).  相似文献   

16.
The reduction of Pu(IV) and Np(VI) with carbohydrazide (NH2NH)2CO in 1–6 M HNO3 solutions was studied. The Pu(IV) reduction is described by a first-order rate equation with respect to Pu(IV). At [HNO3] ≥ 3 M, the reaction becomes reversible. The rate constants of the forward and reverse reactions were determined, and their activation energies were estimated. Neptunium(VI) is reduced to Np(V) at a high rate, whereas the subsequent reduction of Np(V) to Np(IV) is considerably slower and is catalyzed by Fe and Tc ions. The possibility of using carbohydrazide for stabilizing desired combinations of Pu and Np valence states was examined.  相似文献   

17.
Reduction of Rh(IV) in -irradiated and nonirradiated solutions of HNO3 (0.3-3.0 M) was studied. In both systems, Rh(IV) is completely reduced to Rh(III). The reduction rates in nonirradiated solutions amount to 50-90% of rates in irradiated solutions. Reduction of Rh(IV) with water is postulated. The rates of Rh(IV) reduction in both irradiated and nonirradiated solutions increase with [Rh(IV)] growth and decrease with an increase in [HNO3] from 0.5-1 to 2-3 M. The dependence of the reduction rates on the dose rate is weak. Mathematical simulation was used to reveal the mechanism and kinetics of radiation-chemical reduction of Rh(IV) in HNO3 solutions. The rate constant of Rh(IV) reduction with water was calculated by fitting to the experimental data.  相似文献   

18.
The kinetics of U(IV) oxidation with atmospheric oxygen in NaHCO3 solutions was studied by spectrophotometry. In 1 M NaHCO3 at [U(IV)]0 = 20 mM, an induction period is observed, which virtually disappears with decreasing [U(IV)]0 to 1.0 mM. The induction period is caused by the fact that initially U(IV) exists in a weakly active polymeric form. Addition of U(VI) to the initial solution accelerates the oxidation. In a 1 M NaHCO3 solution containing 0.1–1.0 mM U(IV), the U(IV) loss follows the first-order rate law with respect to U(IV) and O2. The pseudo-first-order rate constants, bimolecular rate constants, and activation energy of the U(IV) oxidation were calculated. In dilute NaHCO3 solutions (0.5–0.01 M), the hydrolysis and polymerization of U(IV) become more pronounced. The autocatalysis mechanism presumably involves formation of a complex [U(IV) · U(VI)] with which O2 reacts faster than with U(IV). Oxidation of U(IV) occurs by the two-electron charge-transfer mechanism.  相似文献   

19.
Catalytic reduction of 0.75 M U(VI) with hydrazine in HNO3 solutions was studied under various conditions. At 58°C up to 0.55 M U(IV) is accumulated within 2 h in solutions containing 1-1.5 M N2H5 + and 2 M HNO3 in the presence of 1% Pt/SiO2 (S : L = 1 : 10). The reduction is decelerated with decreasing N2H5 + concentration to 0.75 M or with increasing HNO3 concentration to 3-4 M. 1.2 mol of U(IV) is formed per mole of oxidized hydrazine. Uranium(VI) reduction with formic acid in the presence of 1% Pt/SiO2 and 1% Pt/VP-1An anion exchanger was studied. There exists a threshold N2H5 + concentration below which U(VI) is not reduced. The reduction in solutions containing 1-2 M HCOOH, 1-2 M HNO3, and 0.1 M N2H5 + is faster than in solutions free of formic acid and containing 1-1.5 M N2H5 +.  相似文献   

20.
Sorption of Pu4+, UO22+, NpO2+, Am3+, and Eu3+ ions on S-957 cation exchanger from 2–7 M HNO3 solutions was studied. The following selectivity series was obtained: Pu4+ > UO22+ > NpO2+ > Am3+ ≈ Eu3+. The static and dynamic capacities of the sorbent for Pu were determined, and the eluent composition for the efficient desorption was chosen. The possibility of separating Pu(IV)-Am(III) and Pu(IV)-Np(V) pairs on the sorbent in the column chromatography mode was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号