首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical properties of the poly (vinyl chloride) (PVC) and poly (glycidyl methacrylate) [poly (GMA)] blend system and the PVC and poly (hydroxyethyl methacrylate) [poly (HEMA)] blend system and their crosslinked films were investigated. At the same time, the mechanical properties for the corresponding graft copolymers such as PVC-g-GMA, PVC-g-HEMA, and their crosslinked films were also investigated in this study. The results showed that the tensile strengths for PVC–poly (GMA) blend systems were higher than those for PVC-g-GMA graft copolymer, and the tensile strengths for PVC-g-HEMA were higher than those for PVC-poly (HEMA) blend systems. However, the mechanical properties for the PVC–poly (GMA) blend system were not affected by the crosslinking of the blend system, but those for PVC-poly (HEMA) and their graft copolymers decreased with an increase of the equivalent ratio ([NCO]/[OH]) of the crosslinker. Finally, the surface hydrophilicity of the PVC-g-HEMA graft copolymer and PVC-poly (HEMA) blends were also assessed through measuring the contact angle. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 307–319, 1998  相似文献   

2.
Poly(vinyl chloride) (PVC) with pendent N,N‐diethyldithiocarbamate groups (PVC–SR) was prepared through the reaction of PVC with sodium N,N‐diethyldithiocarbamate (NaSR) in butanone and used as a photoinitiator for the grafting polymerization of three vinyl monomers [styrene (St), methyl methacrylate (MMA), and acrylamide (Am)]. The effects of ultraviolet (UV) irradiation time, PVC–SR amount, and the monomer amount on grafting and grafting efficiency were investigated. The results showed that PVC–SR could initiate the polymerization of three vinyl monomers effectively and obtained crosslinked copolymers. The grafting and grafting efficiency of styrene and methyl methacrylate were higher than those of acrylamide. The polymerization activity of three monomers was acrylamide > methyl methacrylate > styrene. By analyzing the UV spectrum of PVC–SR with a different irradiation time, it was confirmed that PVC–SR was dissociated mainly into macromolecular the sulfur radical PVC–S · and the small molecular carbon radical · C(S)N(C2H5)2; the grafting polymerization mechanism was discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2569–2574, 2000  相似文献   

3.
We report on the preparation of nanoporous films based on an amphiphilic graft copolymer of poly(vinyl chloride-graft-methyl methacrylate), i.e., PVC-g-PMMA. The PVC-g-PMMA graft copolymer was synthesized via atom transfer radical polymerization (ATRP), as confirmed by nuclear magnetic resonance spectroscopy (1H NMR), Fourier transform-infrared (FT-IR) spectroscopy, and gel permeation chromatography (GPC) analysis. The PVC-g-PMMA graft copolymer molecularly self-assembled into nanophase domains of PVC main chains and PMMA side chains, as revealed by wide angle X-ray scattering (WAXS) and transmission electron microscopy (TEM). The graft copolymer film prepared from tetrahydrofuran (THF), a good solvent for both chains, had a random microphase-separated morphology. However, when prepared from dimethyl sulfoxide (DMSO), a solvent selectively good for PVC, the film exhibited a micellar morphology consisting of a PMMA core and a PVC corona. Nanoporous films with different pore sizes and shapes were prepared through the selective etching of PMMA chains using a combined process of UV irradiation and acetic acid treatment.  相似文献   

4.
Phthalates pose adverse health effects due to their propensity to leach and the most common, di(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DOP), are petroleum-based. Conversely, di-esters, succinates are biobased (produced from fermentation of biomass), biodegradable, and therefore potential sustainable replacements for phthalates. A series of succinates, di-octyl succinate (DOS), di-hexyl succinate (DHS), di-butyl succinate (DBS), and di-ethyl succinate (DES), were mixed with poly(vinyl chloride) (PVC). The interaction of the plasticizer ester carbonyl with PVC shows an average −5 cm−1 shift of the carbonyl absorbance peak energy. The glass transition temperatures (T g), were monitored by differential scanning calorimetry and dynamic mechanical analyses. The T gs of DOS and DHS plasticized PVC were significantly lower than DOP plasticized PVC at a lower percent mass. On the other hand, PVC plasticized with either DBS or DES exhibited a similar trend in lowering the T g as that of DOP plasticized PVC.  相似文献   

5.
Antibacterial polyvinyl chloride (PVC) materials have drawn considerable attention since their wide application in medical devices. The objective of this study is to develop a novel quaternary ammonium cationic vinyl chloride copolymer, which can be potentially used as antibacterial additive in PVC matrix. Initially, the low average-number molecular weight poly[(vinyl chloride)-co-(vinyl chloroacetate)] (PVC-co-PVCA) is synthesized by precipitation copolymerization. Subsequently, quaternary ammonium cationic moieties with different lengths of alkyl chains are introduced into the copolymers via quaternization reaction between alkyl-dimethyl tertiary amines with acyl chloride groups. The successful synthesis of PVC-co-PVCA and quaternarized copolymers are carefully confirmed by Fourier transform infrared spectroscopy, nuclear magnetic resonance (1H NMR), and x-ray photoelectron spectroscopy. The antibacterial behaviors of the quaternarized copolymers and its blends with PVC are investigated. The results reveal that all the PVC blends containing at least 5% by weight of quaternarized copolymer have superior bacteriostasis ratio (>99.6%) against both Escherichia coli (E.coli) and Staphylococcus aureus (S. aureus) due to the incorporation of quaternary ammonium groups. Meanwhile, the cationic copolymer exhibits excellent antifouling and much lower migration rate (<0.4%). These interesting consequences endow the quaternarized copolymers as alternative antibacterial agents possess a great deal of potential for use in PVC materials.  相似文献   

6.
The effectiveness of chlorinated polyethylene-graft-polystyrene (CPE-g-PS) as a polymeric compatibilizer for immiscible poly(vinyl chloride)/polystyrene (PVC/PS) blends was investigated. The miscibility, phase behavior, and mechanical properties were studied using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), Izod impact tests, tensile tests, and scanning electron microscopy (SEM). DSC and DMA studies showed that PVC is immiscible with chlorinated polyethylene (CPE) in CPE-g-PS, whereas the PS homopolymer is miscible with PS in CPE-g-PS. The PVC/PS/CPE-g-PS ternary blends exhibit a three-phase structure: PVC phase, CPE phase, and PS phase that consisted of a PS homopolymer and PS in CPE-g-PS. The mechanical properties showed that CPE-g-PS interacts well with both PVC and PS and can be used as a polymeric compatibilizer for PVC/PS blends. CPE-g-PS can also be used as an impact modifier for both PVC and PS. SEM observations confirmed, after the addition of CPE-g-PS, improvement of the interfacial adhesion between the phases of the PVC/PS blends. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 995–1003, 1998  相似文献   

7.
A new series of amphiphilic graft‐copolymers, composed of poly(vinyl chloride) (PVC) backbones and poly(ethylene oxide) side chains, was synthesized by chemical modification of PVC. The synthesis was based on the reaction between chlorine in PVC (polymerization degree 700) and sodium salt of polyethylene glycol (PEG). PEGs with molecular weights of 200 and 600 were used. The graft polymers were characterized by IR and gel permeation chromatography and the molecular parameters such as the average numbers of grafting chains on the PVC backbones were calculated as well as the grafting percent. The molecular weights of PEG were found to influence the rate of the grafting reaction and the final degree of conversion. The maximum grafting percentage of the resulted polymers after the purification was ca. 34%, regardless of the molecular weight of PEG. No gel was observed in the PVC‐g‐PEOs, in spite of the average numbers of grafting chains up to 32. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 475–479, 2000  相似文献   

8.
The synthesis and characterization of novel octa-arm star-blocks consisting of poly(p-chlorostyrene-b-isobutylene) (PpClSt-b-PIB) arms radiating from a calix[8]arene (C8) core are described. The synthesis was accomplished by living isobutylene (IB) polymerization induced by a novel octafunctional calix[8]arene derived initiator 1, followed by addition and living polymerization of p-chlorostyrene (pClSt). This sequential block copolymerization method allowed for precise molecular weight control of both polymeric blocks and thus gave rise to star-block thermoplastic elastomers (TPE) with an outstanding combination of mechanical and thermal properties, i.e., high tensile strengths (22 – 27 MPa) and elongations (∼500 %). Differential scanning calorimetry (DSC) indicated microphase separation into glassy PpClSt (Tg= 129°C) and rubbery PIB (Tg=−66°C) domains, and transmission electron microscopy (TEM) indicated that the PpClSt domains are dispersed in the PIB matrix. Received: 1 April 1998/Revised version: 1 June 1998/Accepted: 2 June 1998  相似文献   

9.
A thermally stable, high molecular weight copolymer of vinyl chloride and trimethylolpropane monoallylether (PVC-co-TMPME) has been synthesized via the suspension polymerization process. Proton nuclear magnetic resonance (NMR) characterization of the copolymer shows the presence of TMPME in the saturated form, indicative of the TMPME reaction. Characterization by differential scanning calorimetry (DSC) shows that the glass transition temperature of the TMPME copolymer is similar to that of the homopolymer, and to that of a 5% vinyl acetate (PVC-co-VA) copolymer. Characterization of plasticized polymers by dynamic mechanical analysis (DMA) shows that both PVC-co-TMPME and PVC-co-VA have lower modulae than the corresponding homopolymer, as well as lower distortion temperatures, as shown by creep compliance master curves. These data indicate that PVC-co-TMPME should share similar process and end-use property characteristics with conventional PVC copolymers without adversely affecting thermal stability. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1603–1612, 1997  相似文献   

10.
Summary Characters of amorphous phase in semicrystalline poly(ethy1ene terephthalate) (PET) were investigated systematically via dynamic mechanical thermal analysis (DMTA) in this paper. It was found that the storage modulus (E') and the glass transition temperature (Tg) of semicrystalline PET changed with the degree of crystallinity (Xc). Tg showed good linearity with Xc. However, neither reduction of E' in the Tg region (ΔlgE') nor loss tangent (tanδ) at the Tg presented linearity with Xc, which suggests that the two-phase model was not suitable for semicrystalline PET. It was also confirmed that the physical aging reduced the chain segmental mobility, producing higher Tg. Received: 22 July 2OO2/Revised version: 19 September 2002/ Accepted: 23 September 2002 Correspondence to Qingrong Fan e-mail: qrfan@pplas.icas.ac.cn, Tel.: +86-10-62563065, Fax: +86-10-62559373  相似文献   

11.
Summary Number average molecular weight (Mn), intrinsic viscosity ([η]) and glass transition temperature (Tg) of low molecular weight atactic polypropylene (APP) grafted with 4-allyl-1,2-dimethoxybenzene (DMAB), 4-allyl-2-methoxyphenol (eugenol) and 4-propenylanisole (trans-anethole) in the presence of dicumyl peroxide (DCP) at 170°C were determined. The influences of reaction time, concentration and extent of grafting on Mn, [η] and Tg of APP were examined. The data were discussed with the mechanism of grafting reactions. Received: 6 June 2000/Revised version: 23 July 2000/Accepted: 4 September 2000  相似文献   

12.
A novel grafted polymer was prepared in one step through free‐radical melt grafting in a single‐screw extruder. It was shown that the addition of styrene (St) to the melt‐grafting system as a comonomer could significantly enhance the grafting degree of methyl methacrylate (MMA) onto polypropylene (PP) and reduce the degradation of the PP matrix by means of Fourier transform infrared and melt flow rate testing, respectively. Then, the potential of using multimonomer‐grafted PP, which was designated PP‐g‐(St‐co‐MMA), as the compatibilizer in PP/poly(vinyl chloride) (PVC) blends was also examined. In comparison with PP/PVC blends, the average size of the dispersed phase was greatly reduced in grafted polypropylene (gPP)/PVC blends because of the addition of the PP‐g‐(St‐co‐MMA) graft copolymer. The tensile strength of the gPP/PVC blends increased significantly, and the impact strength was unchanged from that of the pure PP/PVC blends. The results of differential scanning calorimetry and scanning electron microscopy suggested that the compatibility of the PP/PVC blends was improved. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Kinetics for grafting two reactive monomers (dibutyl maleate (DBM) and maleic anhydride (MAH)) on polyethylene (PE) was investigated for the modified PE (PE‐g‐MAH and PE‐g‐DBM) using solid phase grafting process. This process avoided solvent waste produced in solution process and high operation temperature in melt process. In the presence of the radical initiator, coupling reactions, between the PE and product, and macromolecular radicals, routinely form gels and/or increase molecular weight, resulting in a worse rheological behavior for the grafting products. By adding small amount of interface agents, using combined initiators and optimizing reactor design, graft copolymers with controlled grafting degrees and good rheological properties were prepared. The grafting degrees of copolymers were determined by chemical analysis. FTIR, DSC, and pure water contact angle characterized the chemical structure, the thermal property, and the hydrophilic property of the grafting copolymers, respectively. The peel strength of the graft copolymer as powder coating on the stainless steel surface was measured as high as 12–24 kgf/cm. Mechanical strength and toughness of PE/kaolin clay, PVC/CPE, and PVC/CPE/CaCO3 alloys with small amount of the graft copolymer (~5 wt %) added were improved significantly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3781–3790, 2006  相似文献   

14.
The miscibility of thermoplastic polyurethane elastomers (TPUs) with poly(vinyl chloride) (PVC) was studied. PVC blends with TPUs, prepared from 4,4-diphenylmethane diisocyanate as diisocyanate, hydroxy-terminated poly(butylene adipate) (PBA) as the soft segment, and dimethylolpropionic acid as the chain extender carrying a latent anionic site for neutralization by triethylamine, showed a single glass transition temperature (Tg), irrespective of neutralization of latent anionic sites of TPU. But in neutralized TPU/PVC blends, limited intimate segmental mixing was perceived from the mechanical properties observed. When hydroxy-terminated poly(propylene glycol) was used as the soft segment instead of hydroxy-terminated PBA, PVC/TPU blends showed two separate Tg's of PVC and TPU, irrespective of neutralization. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
Electron‐beam initiated crosslinking of a poly(vinyl chloride)/epoxidized natural rubber blend (PVC/ENR), which contained trimethylolpropane triacrylate (TMPTA), was carried out over a range of irradiation doses (20–200 kGy) and concentrations of TMPTA (1–5 phr). The gelation dose was determined by a method proposed by Charlesby. It was evident from the gelation dose, resilience, hysteresis, glass‐transition temperature (Tg), IR spectroscopy, and scanning electron microscopy studies that the miscible PVC/ENR blend underwent crosslinking by electron‐beam irradiation. The acceleration of crosslinking by the TMPTA was further confirmed in this study. Agreement of the results with a theory relating the Tg with the distance between crosslinks provided further evidence of irradiation‐induced crosslinking. The possible mechanism of crosslinking induced by the irradiation between PVC and ENR is also proposed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1914–1925, 2001  相似文献   

16.
Summary Poly(vinyl chloride-g-2-methyl-2-oxazoline) copolymers were prepared by grafting from the allyl chloride sites of PVC with KI or AgOSO3CF3 as coinitiators. Use of AgOSO3CF3 led to higher grafting efficiencies and higher contents of poly(2-methyl-2-oxazoline) in the graft copolymers. DTA analyses of the P(VC-g-Me-Oxz) identified the thermal transitions of this copolymer; TGA analyses showed that the graft copolymers were less thermally stable than the constituent homopolymers. Unlike blends of P(Me-Oxz) and PVC, the graft copolymers could be molded easily; the graft materials exhibited greater flexural moduli but lower HDT's than PVC.  相似文献   

17.
Summary Unplasticised poly(vinyl chloride) (uPVC) films have been tested using the essential work of fracture (EWF) method. Influence of loading rate and film thickness on the tensile properties and work of fracture parameters was evaluated. In addition, energy partition analyses were carried out applying two different approaches (“yielding” and “initiation”), which differ in the treatment of the stored elastic energy. Results showed less effect of the film thickness and deformation rate (<l00 mm/min) on the EWF terms. On the other hand, the specific essential work of fracture (w e) at high load rate (1.2 m/s) approached the yielding-related term (w e,y) obtained at static loading rates (<l00 mm/min). Received: 16 July 2002/Revised version: 31 March 2003/Accepted: 29 April 2003 Correspondence to M. Ll. Maspoch  相似文献   

18.
The dynamic mechanical studies, impact resistance, and scanning electron microscopic studies of ethylene propylene diene terpolymer–poly(vinyl chloride) (EPDM–PVC) and methyl methacrylate grafted EPDM rubber (MMA‐g‐EPDM)–PVC (graft contents of 4, 13, 21, and 32%) blends were undertaken. All the regions of viscoelasticity were present in the E′ curve, while the E″ curve showed two glass transition temperatures for EPDM–PVC and MMA‐g‐EPDM–PVC blends, and the Tg increased with increasing graft content, indicating the incompatibility of these blends. The tan δ curve showed three dispersion regions for all blends arising from the α, β, and Γ transitions of the molecules. The sharp α transition peak shifted to higher temperatures with increasing concentration of the graft copolymer in the blends. EPDM showed less improvement while a sixfold increase in impact strength was noticed with the grafted EPDM. The scanning electron microscopy micrographs of EPDM–PVC showed less interaction between the phases in comparison to MMA‐g‐EPDM–PVC blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1959–1968, 1999  相似文献   

19.
Summary Methyl 2,4-bis-(2'-hydroxyethoxy)benzylidenecyanoacetate (3) was prepared by hydrolysis of methyl 2,4-bis-(2'-vinyloxyethoxy)benzylidenecyanoacetate (2). Diol 3 was condensed with 2,4-toluenediisocyanate, 3,3'-dimethoxy-4,4'-biphenylene-diisocyanate, and 1,6-hexamethylenediisocyanate to yield polyurethanes 4–6 containing the NLO-chromophore 2,4-dioxybenzylidenecyanoacetate. The resulting polyurethanes 4–6 were soluble in common organic solvents such as acetone and DMF. Polymers 4–6 showed a thermal stability up to 280°C in TGA thermograms with T g values obtained from DSC thermograms in the range of 66–114°C. The SHG coefficients (d33) of poled polymer films were around 7.8 × 10−9 esu. Received: 25 February 2002/ Revised version: 25 March 2002/ Accepted: 29 March 2002  相似文献   

20.
Summary Poly(isobutylene-b-ɛ-caprolactone) diblock and poly(ɛ-caprolactone-b-isobutylene-b-ɛ-caprolactone) triblock copolymers have been prepared and characterized. The synthesis involved the living cationic polymerization of IB, followed by capping with 1,1-diphenylethylene or 1,1-p-ditolylethylene and end-quenching with 1-methoxy-1-trimethylsiloxy-2-methyl-propene to yield methoxycarbonyl functional PIB. Hydroxyl end-functional PIB polymers were quantitatively obtained by the subsequent reduction of methoxycarbonyl end-functional PIB with LiAlH4. The structure of hydroxyl end-functional PIBs was confirmed by 1H NMR and IR spectroscopy. Poly(ɛ-caprolactone-b-isobutylene) diblock copolymers and poly(ɛ-caprolactone-b-isobutylene-b-ɛ-caprolactone) triblock copolymers were synthesized by the living cationic ring-opening polymerization of ɛ-caprolactone with hydroxyl end-functional PIB as macroinitiator in the presence of HCl•Et2O via the “activated monomer mechanism”. The block copolymers exhibited close to theoretical Mns and narrow molecular weight distributions. Received: 30 January 2002/Revised version: 19 February 2002/ Accepted: 19 February 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号