共查询到17条相似文献,搜索用时 95 毫秒
1.
通过热梯度化学气相渗透工艺制备了石墨粉增强热解炭基复合材料(G/C Composites),采用偏光显微镜、SEM观察了其微观组织结构,运用电学和机械实验对其性能进行了研究.结果表明,热解炭能从不同的方位与石墨颗粒包裹性地结合,充分地填充石墨颗粒间的孔隙.G/C复合材料呈现各向同性,密度高(1.85 g/cm3),体积电阻率高(148.4 μΩ·m),具有优异的力学性能(抗弯强度为50MPa,耐压强度为120MPa).G/C复合材料的力学性能比纯石墨高一倍,抗压强度与炭毡增强C/C复合材料相当,弯曲强度比炭毡增强C/C复合材料略低. 相似文献
2.
炭/炭复合材料新型热梯度制备工艺 总被引:1,自引:0,他引:1
对传统的热梯度化学气相渗透工艺进行了改进.把高热导率(55W/(m·℃))的48k炭纤维束穿入针刺炭毡预制体中心.利用炭纤维束和炭毡预制体热导率(0.15W/(m·℃))的差异,在预制体内部产生热梯度.在900℃~1200℃下,天然气首先在预制体中心的48k炭纤维处热解,致密化沿径向由中心向外部推进,67 h后材料的密度达1.778 g/cm3.研究了炉内输入电压、电阻、致密化时间、沉积层位置等工艺参数对材料性能的影响.通过偏光显微镜和扫描电子显微镜研究了基体热解碳的微观结构,并对炭纤维体积含量为10%的炭/炭试样进行了烧蚀性能测试. 相似文献
3.
以密度0.47g/cm3的碳毡为预制体,乙醇为前驱体,氮气为载气,在1125℃,压力为20kPa的条件下,用等温压力梯度化学气相渗透法,经114h致密化,制备出密度为1.67g/cm3的炭/炭复合材料.经测试,材料的弯曲强度为137MPa.偏光显微分析显示:该材料各区域沉积的基体热解碳组织结构均为高织构,其消光角为19.5°~20.5°,石墨化处理后测得热解碳的d002为0.3362nm.断口扫描电子显微分析结果也进一步证实获得的热解碳组织为高织构.表明乙醇是一种极具潜力的制备炭/炭复合材料的前驱体. 相似文献
4.
5.
以甲烷为碳源,通过化学气相沉积和化学蒸汽渗透两步法将热解炭填充至碳纳米管阵列间的空隙而制备出碳纳米管阵列/热解炭复合材料。采用扫描电镜和拉曼光谱仪对样品的结构进行表征。结果表明,碳纳米管被热解炭填充和覆盖形成均相的复合膜,其密度增加4倍,同时热解炭已石墨化。 相似文献
6.
7.
采用医用炭/炭复合材料并通过梯度化学气相沉积法(CVD)在其表面制备热解炭涂层, 研究分析了涂层的显微结构、摩擦系数、磨损情况. 结果发现, 该热解炭涂层表面被直径约20 μm热解炭球致密覆盖, 在断口处呈现紧密、多层的热解炭. 与用沥青浸渍/炭化法制备的炭/炭复合材料相比, 在干摩擦时, 热解炭涂层样品的摩擦系数更大; 在模拟人体关节的湿摩擦时, 它的摩擦系数低; 在干摩擦和湿摩擦的情况下, 它的磨损要小很多. 这些结果表明利用梯度的化学气相沉积法(CVD)制备医用炭/炭复合材料的涂层可以提高其表面的耐磨性. 相似文献
8.
在1000℃,0.5 kPa丙烯分压条件下,以N2、H2为载气和无载气情况下于热梯度CVI炉中制备了C/C复合材料,研究了载气特别是氢气对材料基体热解炭显微结构的影响。通过偏光显微镜测定材料不同区域CVI热解炭的消光角,分析热解炭显微结构在试样中的分布规律。结果表明: N2在CVI过程中充当惰性角色,不影响热解炭的显微结构; H2可以调节热解炭沉积时的微环境气氛,更有利于得到粗糙层结构热解炭。试样增密延长炭源气滞留时间,引起带状结构热解炭中显微结构的突变。借助氢气作为载气,可以实现对C/C复合材料中热解炭显微结构的更优控制。 相似文献
9.
10.
采用天然气为前躯体在不同压力下使用化学气相渗积法制备炭/炭复合材料。利用甲烷分解热力学与沉积动力学研究了渗积压力对渗积速率和热解炭组织结构的影响。采用偏光显微镜观察热解炭的组织结构。结果表明:随着渗积压力的增加,初始渗积速率增大;但在渗积后期,渗积速率随着渗积压力的增大而降低,导致在高渗积压力下相同时间制备样品的最终密度降低。热解炭组织结构对渗积压力具有很强的依赖性。在低压(1 kPa)下渗积得到的热解炭基体全部为粗糙层结构。在适中的压力(3kPa,5 kPa,10 kPa)下,以炭纤维为圆心由内到外依次得到各向同性和粗糙层热解炭,整个基体以粗糙层为主。在15 kPa下,得到的热解炭组织结构为各向同性和光滑层组织。 相似文献
11.
Jinsong Li Ruiying Luo Qiang Li Tianmin Wang 《Materials Science and Engineering: A》2008,480(1-2):278-282
Three kinds of preforms, chopped fibers/resin carbon, spreading layers of carbon cloth, and needle-pricked long fiber felt, were used in this study. The preforms were densified by using the electrified preform heating CVI method (ECVI), and infiltrated using natural gas. Initial thermal gradients were determined. Resistivity and density evolutions with infiltration time have been recorded. A tensile test was applied to investigate the influence of preform architecture on the tensile properties of the C/C composites. Results show that the architecture of preform strongly influences the uniformity of infiltration and fibers/matrix bonding. The samples prepared from using 1K plain carbon cloth have the smallest density variations with position (about 0.011 g/cm3), and possess the highest tensile strength and modulus, while the samples produced from chopped fibers/resin carbon possess the lowest tensile strength due to their strong interfacial bonding between resin carbon and carbon fibers and poor microstructure. 相似文献
12.
Preforms containing 0, 5, 10, 15 and 20 wt.% carbon nanofibers (CNFs) were fabricated by spreading layers of carbon cloth, and infiltrated by using the technique of isothermal chemical vapor infiltration (ICVI) at the temperature of 1100 °C under the total pressure of 1 kPa and with the flow of the mixture of propane/nitrogen in a ratio of 13:1. The infiltration rates increased with the rising of CNF content, and after 580 h of infiltration, the achievable degree of pore filling was the highest when the CNF content was 5 wt.%, but the composite could not be densified efficiently as the CNF content ranged from 10 to 20 wt.%. An analysis of the results, based on the effective diffusion coefficient and on the in-pore deposition rates, shows that the CNFs, due to their higher aspect ratio, accelerate overgrowth at pore entrances and thus lead to incomplete pore filling. 相似文献
13.
A carbon nanotube–enhanced SiC (CNT–SiC) coating was deposited on C/C composites to improve the oxidation resistance of C/C. The CNT–SiC coating was prepared by direct growth of CNTs on C/C surface at 700 °C followed by deposition of SiC using chemical vapor deposition at 1150 °C for 1 h. SiC was deposited on the CNTs as well as the interface between CNTs and C/C, making CNTs strongly rooted on C/C surface. The final CNT–SiC coating consisted of two layers: the CNT–SiC layer and SiC layer. In comparison to the SiC coating, the CNT–SiC coating showed fewer cracks and a better oxidation resistance because the CNTs reduce the stress in the coating caused by the mismatch of the coefficient of thermal expansion between C/C and SiC. 相似文献
14.
以炭毡为预制体,煤油蒸气为前驱体,利用两个热源分别加热预制体的上下表面,形成两个热梯度和双沉积面,第三个热源加热前驱体保证反应气体的供给,采用这种改进的化学液相气化渗入法快速制备了炭/炭(C/C)复合材料.对C/C复合材料的密度和气孔率进行了表征,并通过XRD,SEM等方法对其石墨化程度、显微结构进行了研究.结果表明:C/C复合材料的密度随沉积温度的升高呈线性增加,而气孔率逐渐减小,体积密度为0.2g/cm3的预制体在1100℃沉积3h后密度达到1.72g/cm3.2200℃热处理后,C/C复合材料的d002显著降低,具有较高的石墨化程度.C/C复合材料中的炭纤维被环状的热解炭所包围.沉积过程中前驱体较短的对流和扩散路径以及预制体中存在的上下热梯度和相应的双沉积面是材料快速制备的主要因素. 相似文献
15.
Yongdong Xu Laifei Cheng Litong Zhang Hongfeng Yin Xiaowei Yin 《Materials Science and Engineering: A》2001,300(1-2)
High toughness and reliable three dimensional textile carbon fiber reinforced silicon carbide composites were fabricated by chemical vapor infiltration. Mechanical properties of the composite materials were investigated under bending, shear, and impact loading. The density of the composites was 2.0–2.1 g cm−3 after the three dimensional carbon preform was infiltrated for 30 h. The values of flexural strength were 441 MPa at room temperature, 450 MPa at 1300°C, and 447 MPa at 1600°C. At elevated temperatures (1300 and 1600°C), the failure behavior of the composites became some brittle because of the strong interfacial bonding caused by the mis-match of thermal expansion coefficients between fiber and matrix. The shear strength was 30.5 MPa. The fracture toughness and work of fracture were as high as 20.3 MPa m1/2 and 12.0 kJ·m−2, respectively. The composites exhibited excellent uniformity of strength and the Weibull modulus, m, was 23.3. The value of dynamic fracture toughness was 62 kJ·m−2 measured by Charpy impact tests. 相似文献
16.
17.
Carbon nanotube (CNT) reinforced SiCf/SiC composite was prepared by in situ chemical vapor deposition (CVD) growth of CNTs on SiC fibers then following polymer impregnation pyrolysis (PIP) process. The nature of CNTs and the microstructure of the as prepared CNT-SiCf/SiC composite were investigated. The mechanical properties of the as prepared CNT-SiCf/SiC composite were measured. The results reveal that the in situ CVD growth of CNTs on SiC fibers remarkably promotes the mechanical properties of SiCf/SiC composite. The secondly pull-out of CNTs from matrix during the pull-out of the SiC fibers from matrix consumes the deformation energies, resulting in promotion of the mechanical properties for composite. 相似文献