首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H. Muro  T. Tsushima  M. Nagafuchi 《Wear》1975,35(2):261-282
Surface cracks initiating flaking failure observed by Sugino in rolling fatigue were further studied.Surface crack initiation was influenced by either running or material conditions, affecting the residual tensile stress just below the rolling contact surface. The fatigue crack is thought to initiate very near the surface by the stress cycle of small tensile residual stress and large compressive contact stress. The amount and direction of the tensile residual stress due to rolling contact varies with the contact geometry, which probably determines the direction of the surface crack and the appearance of flaking. The transition from the surface crack to flaking failure or complete section fracture is material and running condition dependent and is explained by a fracture mechanics concept.  相似文献   

2.
The stress field that results from two bodies in contact is an important aspect that governs the fretting fatigue behavior of materials. Applied loads as well as contact geometries influence the contact stresses. The profile of an indenter and the boundary conditions provide sufficient information from which the surface tractions and the corresponding subsurface stresses have been calculated in a semi-infinite halfspace using singular integral equations. In this investigation, a numerical subroutine was developed to calculate the surface tractions and the corresponding surface and subsurface stresses of an arbitrary finite thickness infinite plate subjected to loading through a random indenter. The results from the detailed stress analysis of the contact region are required by both an initiation and fracture mechanics approach. While initiation criteria involving stress gradient fields, such as sharp notches and edges of contact in fretting fatigue, are not well established or agreed upon, stress intensity factor calculations using tools such as weight functions are more reliable. The stress intensity analysis, which is used to determine whether an initiated crack will continue to grow if it is above the threshold, depends on many variables in the stress analysis such as pad and specimen geometry, loading configuration and friction coefficient. The contact stress analysis has been used to determine equivalent stress parameters that are related to the initiation of a crack. Similarly the numerical subroutine for the contact stresses is used in conjunction with the stress intensity analysis to determine the influence of the geometry, loading configuration and friction coefficient on the stress intensity factor. Results from high-cycle fretting fatigue experiments are used to determine the threshold stress intensity factor for a given configuration. The combination of the numerical and experimental analysis is then used to develop a tool for high-cycle fretting fatigue based on a threshold approach involving a go–no go criterion.  相似文献   

3.
对含缺陷的未预滚压和预滚压车轮钢试样分别进行滚动接触疲劳试验,观察表面缺陷的形貌变化过程,分析预滚压和缺陷尺寸对轮轨材料滚动接触疲劳性能的影响。通过有限元方法分析缺陷附近材料的应力状态,通过多轴疲劳模型分析缺陷尺寸对滚动接触疲劳裂纹萌生规律的影响。试验结果表明:由于表层材料的塑性变形,未滚压车轮试样的缺陷尺寸随滚动周次的增加而减小;超过一定周次后,由于塑性变形不再累积,缺陷尺寸基本保持不变;预滚压处理通过减小表层材料的塑性变形,可抑制缺陷尺寸的减小,从而降低车轮试样的疲劳寿命;缺陷尺寸的增加会进一步降低预滚压试样的疲劳寿命;在油润滑条件下,预滚压和表面缺陷对车轮材料摩擦磨损性能没有显著影响。仿真结果表明,当缺陷尺寸从200μm增加至400μm,最大剪应力幅值从缺陷底部转移至缺陷中部,疲劳裂纹萌生位置也随之改变。  相似文献   

4.
Suitability of different multi-axial parameters in predicting fretting fatigue life of Ti-6Al-4V specimens has been investigated. Ameliorating effect of surface treatments on fretting fatigue has been studied. In simple uni-axial/multi-axial fatigue tests, nucleation as well as propagation of cracks occur under the influence of identical stresses. Hence nucleation accounts for most of the total life. Fretting fatigue crack nucleation occurs due to very large contact stresses, effect of which is felt only close to the surface (due to steep gradients). Propagation mostly occurs due to lower stresses in the bulk of the material (negligible influence of contact tractions) and forms a significant portion of total life. Total life has to be taken as sum of initiation life calculated from different multi-axial fatigue parameters and propagation life from conventional fracture mechanics approach. Steep stress gradients necessitate the adoption of a statistics based approach to predict the crack initiation life, based on an assumed distribution of flaws. The quality of comparison between predicted and experimentally observed failure lives provides confidence in the notion that conventional fatigue life prediction tools can be used to assess fretting fatigue failure. Effect of surface treatments like shot-peening with or without additional surface coatings on total life of the specimen and on friction coefficient has been studied.  相似文献   

5.
《Wear》1987,118(3):305-317
Recent improvements in steel-making techniques have much decreased the content of non-metallic inclusions in steels. Inclusions are known to be detrimental to the rolling contact fatigue life of bearings. While bearing life has improved because of advances in steel-making techniques, the conventional method for evaluating non-metallic inclusions is losing its effectiveness. A new method for evaluating the non-metallic inclusion content of steels used for rolling bearings has been developed. In ring-type rotating fatigue fracture tests on quench-hardened specimens a crack usually initiates on the inside surface of the ring specimen. However, a crack initiates near the outside surface when the specimen has been treated, to produce a large residual tensile stress on the outside surface before the test. In this case, the fractured surface remains protected from damage caused by rubbing of the mating fracture surfaces until the test rig stops. A fish eye is observed on the fracture surface and there is a non-metallic inclusion at the centre of the fish eye. There is a correlation between the size of the non-metallic inclusion in the fish eye and the rolling contact fatigue life of the steel.  相似文献   

6.
This study investigates the residual stress distribution induced by hard machining and grinding and compares its impact on fatigue parameters. The residual stress distribution below hard turned and ground surfaces is investigated after a thermally damaged layer is removed. Fatigue parameters are computed based on the residual stress distribution to compare the impact of the residual stress distribution on the fatigue performance. Rolling contact fatigue tests are then performed to substantiate the computations. The effect of residual stresses on crack initiation depth is shown to be significant for the ground specimen. The maximum shear stress at crack initiation depth of the hard turned specimen is smaller than that of the ground specimen. Due to a significant increase in crack initiation life, the predicted rolling contact fatigue life of the hard turned specimen is longer than that of the ground specimen. The overall average in the ratios of predicted life to experimental life for the hard turned specimen is closer to 1 than that for the ground specimen. The results demonstrate that the hard turned specimen shows better rolling contact fatigue performance and better accuracy in the fatigue life prediction.  相似文献   

7.
为研究辗轧工序对车轮使用性能的影响,选择经辗轧工序成形和直接钢水浇筑成形的2种车轮材料,利用GPM-30试验机开展摩擦磨损和接触疲劳性能研究,采用光学显微镜、扫描电子显微镜、ASPEX分析仪、EBSD分析2种车轮材料在不同接触应力状态下摩擦磨损和接触疲劳裂纹萌生扩展行为。结果表明:辗轧工序能够有效地细化车轮材料晶粒,减小珠光体片层间距,从而改善车轮微观组织,减少不均匀塑性变形,抑制裂纹的萌生和扩展,减少磨损量,延长接触疲劳寿命;同时发现夹杂物的形态影响接触疲劳试验亚表面裂纹的萌生。  相似文献   

8.
考虑渗碳、磨齿、喷丸等工艺产生的齿面残余应力,建立齿面接触应力与残余应力的复合应力场,提出一种螺旋锥齿轮接触疲劳裂纹萌生-扩展寿命计算方法。构建齿轮有限元接触分析模型,计算多轴交变接触应力场。考虑空间螺旋曲面残余应力分布的复杂性,将变曲率齿面离散为网状节点;测量各节点表面与次表面的残余应力,建立齿面残余应力场。基于Dang Van多轴疲劳准则,构建齿面裂纹萌生模型;计及残余应力与裂纹闭合效应,构建齿面裂纹扩展模型。计算复合应力场下齿轮接触疲劳寿命,研究残余应力对齿面裂纹萌生-扩展寿命的影响规律。结果发现:复杂齿面空间变曲率会影响喷丸等工艺产生的残余应力分布,中心区域的残余压应力高出齿面边缘区域约20%;复合应力场下齿面裂纹萌生位置与寿命主要取决于接触应力,残余应力会改变齿面节点平均应力进而影响疲劳寿命;齿面裂纹扩展寿命约占全寿命的10%,表征齿轮接触疲劳快速失效至迅速断裂。上述研究对于高性能齿轮传动的长寿命、高可靠性设计具有一定的参考价值。  相似文献   

9.
Particle denting, and contamination marks found on bearing raceways, can induce stress concentrations and facilitate surface initiated fatigue. The lubricant film developed at the dent and related local surface stresses are also significant to the crack initiation mechanism. In this article, a new methodology is presented to link the micro-EHL film and related local stresses to the fatigue life of rolling bearings. The applied methodology is based on Fourier analysis of the harmonic components of the surface microgeometry to predict stresses and induced lubricant film. The application of this method to actual bearing surfaces is discussed and analyzed in relation to some existing microcontact EHL solutions. A global evaluation of the use of the method to rolling bearings dynamic load ratings is also carried out. A comparison between experimentally obtained rolling bearing life and lives predicted using the present theory indicate the global ability of the model to describe the effect of the lubrication quality on the life expectancy of rolling contacts. From this analysis, an assessment of some typical equations used in rolling bearing dynamic ratings is carried out. It is found that the degree of lubrication of the rolling contact and the cleanliness conditions of the oil are indeed significant to the prediction of the life expectancy of the bearing.  相似文献   

10.
Rolling contact fatigue (RCF) is the dominant failure mode in properly installed and maintained ball and roller element bearings. Lundberg and Palmgren in their seminal publication indicated that this failure is due to the alternating component of shear stress. Thus, torsional fatigue experiments have been used to predict the RCF behavior of bearing materials. In non-conformal contacts, due to Hertzian pressure the contact experiences large compressive stresses. Hence, it is critical to take into account the effect of these large compressive stresses in torsional fatigue to better simulate RCF conditions. This paper presents an investigation of torsional fatigue of bearing steels, while the effects of combined compressive stress and its relevance to material behavior in rolling contact fatigue is examined. An MTS test rig was used to investigate the fatigue life of several bearing steels and their failure mechanisms were evaluated through fractography. Then the effects of compressive stresses on torsional fatigue were investigated. A set of custom designed clamp fixtures were designed, developed and used to apply Hertzian pressures of up to 2.5 GPa on the torsion specimens. The experimental results indicate that at high cycle fatigue, a combination of shear and biaxial compression, by application of Hertzian contact, is more detrimental to fatigue life than shear alone; however, as expected it has little to negligible effects in the low cycle fatigue regime. Also the failure mode changes such that fracture planes form a cup and cone pair with multiple internal cracks as opposed to helical planes observed in pure torsion which are formed by a single crack. A 3D finite element model (using ABAQUS) was developed to investigate the fatigue damage accumulation, crack initiation, and propagation in the material. The topology of steel microstructure is modeled employing a randomly generated Voronoi tessellation wherein each Voronoi cell represents a material grain and the boundaries between the cells are assumed to represent the weak plane in the steel matrix. Continuum damage mechanics (CDM) was used to model material degradation during the fatigue process. A comprehensive damage evolution equation is developed to account for the effect of mean stress on fatigue. The model predicts the fatigue lives and crack patterns successfully both in presence and absence of compressive stresses.  相似文献   

11.
It is well known that a thin phase-transformed white layer can be formed on component surfaces produced by hard machining. However, it is not clear as to how the white layer affects component performance, for example, in rolling contact fatigue. This study aims to determine the effects of white layer and associated residual stress on rolling contact stresses and strains. It is nearly impossible for an experimental study to identify the effects of white layer alone on rolling contact. Furthermore, small-scale contact stresses and strains (less than 30 μm) of the phase-transformed region are difficult to measure using the current experimental techniques. Therefore, a finite element analysis simulation model of rolling contact incorporating machining-induced surface integrity has been developed in this study. Three cases were investigated to decouple the effects of surface integrity factors: surface with white layer only, surface with residual stress only, and surface with white layer and residual stress. The simulation results show that distinct material properties of the white layer significantly influence the magnitudes and distributions of near-surface stresses and strains instead of those in the subsurface. Furthermore, it can be inferred that the white layer would affect near-surface fatigue damage instead of subsurface fatigue damage. The simulated near-surface fatigue damage mechanisms have been substantiated by the fatigue test data.  相似文献   

12.
Wind turbine gearbox (WTG) bearings can fail prematurely, significantly affecting wind turbine operational availability and the cost of energy production. The current most commonly accepted theory of failure mechanism is that the bearing subsurface is weakened by white etching crack (WEC) networks that eventually lead to the flaking away of material from the bearing surface. Subsurface damage due to rolling contact fatigue (RCF) is thought to be the main cause of premature failure, resulting from the initiation of micro-cracks, often at non-metallic inclusions or other material defects, which then propagate to the bearing surface. This study proposes a hypothesis that impact loading together with high levels of surface traction and contact pressure are important factors contributing to the initiation of micro-cracks and white etching areas (WEAs) at non-metallic inclusions which may lead to the formation of WEC networks. Both repeated impact and twin-disc RCF tests were designed to investigate inclusion-initiated micro-cracks and WEAs at subsurface in order to test this hypothesis. This led to the recreation of inclusion-initiated micro-cracks and WEAs in tested specimens, similar to the subsurface damage observed at inclusions in failed WTG bearing raceways. Tests were carried out to determine threshold levels of contact pressure, surface traction, and impact loading required for the formation of inclusion-initiated micro-cracks and WEAs.  相似文献   

13.
Compared with grinding, hard turning may induce a relatively deep compressive residual stress. However, the interactions between the residual stress profile and applied load and their effects on rolling contact stresses and strains are poorly understood, and are difficult to measure using the current experimental techniques due to the small-scale of the phenomena. A new 2-D finite element simulation model of bearing rolling contact has been developed, for the first time, to incorporate the machining-induced residual stress profile instead of only surface residual stresses. Three cases using the simulation model were assessed: (a) measured residual stress by hard turning, (b) measured residual stress by grinding, and (c) free of residual stress. It was found that distinct residual stress patterns hardly affect neither the magnitudes nor the locations of peak stresses and strains below the surface. However, they have a significant influence on surface deformations. The slope and depth of a compressive residual stress profile are key factors for rolling contact fatigue damage, which was substantiated by the available experimental data. Equivalent plastic strain could be a parameter to characterize the relative fatigue damage. The magnitudes of machining-induced residual stress are reduced in rolling contact. The predicted residual stress pattern and magnitude agree with the test data in general. In addition, rolling contact is more sensitive to normal load and residual stress pattern than tangential load.  相似文献   

14.
Tensile residual and interference fit stresses not treated in classical bearing formulations are known to reduce bearing rolling contact fatigue (RCF) life. Recent modifications of such theory to account for these stresses have simply included them in the computation of a single yield stress type criterion—either maximum shear or equivalent stress. An alternative modification is proposed and demonstrated for fatigue crack initiation that recognizes the primary influence of the maximum range of shear stress but includes the effect of normal stress on the critical planes, as in other successful bulk fatigue criteria for multiaxial nonproportional stress cycle fatigue.  相似文献   

15.
There has been a considerable body of research concerned with predicting the service life of rolling contact components. It is well known that the prevailing cause of failure in rolling contact components is fatigue crack. Although the trend has been toward the use of surface integrity in fatigue life prediction, one aspect missing in most models has been a consideration of the residual stress scatter in the subsurface. Since the fatigue life of a manufactured component depends on its weakest point, the local extreme is most relevant for the fatigue life prediction. This study thus incorporates the residual stress scatter into the rolling contact fatigue life model to predict the fatigue life closer to the experimental life. It is noted that residual stresses vary significantly at the same depth. After the residual stress scatter is incorporated into the model, the predictions agree well with the experimental lives.  相似文献   

16.
H. Muro  N. Tsushima  K. Nunome 《Wear》1973,25(3):345-356
Residual stress measurements were carried out for the failure analyses of rolling bearings. According to the survey of more than one hundred examples, some change in residual stress was observed in most cases.Compressive residual stresses peak below the surface and if present, represent the position of maximum shearing stress due to normal contact pressure. Unexpected overloading is confirmed by this method.However, bearings often fail without such overloading. Early failures were observed to be associated with the residual stress changes near the surface. The influences of sliding, vibration and surface roughness on residual stress changes are discussed.  相似文献   

17.
Various surface modification methods have been employed in order to improve the tribological performance of machine elements. In this work, electroless Ni–P alloy plating and sulfurizing treatments were employed, and the surface modified steel rollers and ball bearings were fatigue-tested under a pure or free rolling contact condition. The fatigue lives of both rollers and bearings were improved by these surface modifications. The contact pressure and subsurface stresses of the surface modified rollers and bearings were analyzed. The reason why the rolling fatigue strengths of surface modified rollers and bearings were higher than those of the non-coated ones would be due to the smaller contact pressure and subsurface stresses by the smaller elasticity as well as the conformity of the plated layer.  相似文献   

18.
钢轨滚动接触疲劳研究   总被引:2,自引:0,他引:2  
张伟  郭俊  刘启跃 《润滑与密封》2005,(6):195-199,203
介绍了滚动接触疲劳裂纹的萌生及扩展的形成机理、钢轨滚动接触疲劳的破坏分类、影响因素,从钢轨新材料的开发、轮轨接触几何型面的优化和铁路工况的改善等几个方面提出了减缓钢轨滚动接触疲劳的措施。  相似文献   

19.
Crack propagations or failure modes in rolling element bearings, which had been difficult to explain via conventional crack propagation mechanisms such as the orthogonal shear stress mechanism, were discussed from the viewpoint of a tensile strain mechanism. Contact stresses are compressive in three axes, whose values differ from each other; then strain can be tensile in one of these directions, acting at a right angle to the direction of maximum compressive stress. A crack is considered to propagate by this tensile strain. When contact stress is small, a crack produced by some cause can propagate by this elastic tensile strain. When contact stress is large, residual tensile strain is produced by plastic deformation, which can also influence the crack propagation. Several failure modes of rolling element bearings, which had been difficult to explain, were explained by tensile strain.  相似文献   

20.
Experimental investigation and mechanical analysis have been carried out to study the edge crack formation during cold strip rolling using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). The effects of friction and surface roughness on edge crack initiation and growth rate have been discussed. Friction leads to an increase in fracture loads and decreasing the friction coefficient is effective in preventing the microcracks. Surface roughness variation along the strip width contributes to stress distribution and inhibits crack nucleation. The findings reveal that the behaviour of crack evolution is influenced by fracture surface roughness as well as rolling friction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号