首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study on heat transfer and fluid flow has been carried out for a swirling round impinging jet. A thermosensitive liquid crystal sheet was used for the heat transfer measurements and the three velocity components were measured with LDV in the stagnation region for cases where the Swirl number Sw = 0.0, 0.22, and 0.45 at the Reynolds number Re = 8100. The formation of recirculation flow due to a swirl near the impinging wall was found to deteriorate the heat transfer coefficient in the stagnation region and results in a more uniform distribution of the Nusselt number with an increasing Swirl number. The heat transfer mechanism of the swirling impinging jet is discussed based on the flow characteristics of the mean velocities and turbulence quantities. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(5): 324–335, 2005; Published online in Wiley InterScience ( www.interscience. wiley.com ). DOI 10.1002/htj.20068  相似文献   

2.
In this study, laminar forced convective heat transfer of a Newtonian fluid in a micropipe is analyzed by taking the viscous dissipation effect, the velocity slip and the temperature jump at the wall into account. Hydrodynamically and thermally fully developed flow case is examined. Two different thermal boundary conditions are considered: the constant heat flux (CHF) and the constant wall temperature (CWT). Either wall heating (the fluid is heated) case or wall cooling (the fluid is cooled) case is examined. The Nusselt numbers are analytically determined as a function of the Brinkman number and the Knudsen number. Different definitions of the Brinkman number based on the definition of the dimensionless temperature are discussed. It is disclosed that for the cases studied here, singularities for the Brinkman number-dependence of the Nusselt number are observed and they are discussed in view of the energy balance.  相似文献   

3.
4.
Nanofluids are considered as interesting alternatives to conventional coolants. It is well known that traditional fluids have limited heat transfer capabilities when compared to common metals. It is therefore quite conceivable that a small amount of extremely fine metallic particles placed in suspension in traditional fluids will considerably increase their heat transfer performances. A numerical investigation into the heat transfer enhancement capabilities of coolants with suspended metallic nanoparticles inside a radial, laminar flow cooling configuration is presented. Temperature dependant nanofluid properties are evaluated from experimental data available in recent literature. Results indicate that considerable heat transfer increases are possible with the use of relatively small volume fractions of nanoparticles. Generally, however, these are accompanied by considerable increases in wall shear-stress. Results also show that predictions obtained with temperature variable nanofluid properties yield greater heat transfer capabilities and lower wall shear stresses when compared to predictions using constant properties.  相似文献   

5.
This paper look at the effects of heat transfer on peristaltic flow of Walter's B fluid in an asymmetric channel. The regular perturbation method is used to solve the governing equations by taking the wave number as the small parameter. Expressions for stream function, temperature distribution, and heat transfer coefficient are presented in explicit form. Solutions are analyzed graphically for different values of arising parameters. It has been found that these parameters affect considerably the considered flow characteristics. Results show that with an increase in the Eckert and Prandtl numbers, the temperature and heat transfer coefficient increase. Further, the absolute value of the heat transfer coefficient increases with an increasing viscoelastic parameter. Comparison with published results for viscous fluid is also presented. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21021  相似文献   

6.
In this research endeavor, Casson fluid flow and melting heat transfer due to a curved nonlinearly stretching sheet are investigated. The sheet is naturally permeable and the flow is considered in a porous medium. For flow in a porous medium, a modified Darcy's resistance term for Casson fluid is considered in the momentum equation. In the energy equation, heat transport characteristics, including viscous dissipation, are taken into account. Mass transport is also studied together with the impact of chemical reaction of higher order. The governing nonlinear partial differential equations of flow, heat, and mass transport are reduced to nondimensional ordinary differential equations using adequate similarity transformations and then solved numerically employing the bvp4c technique and Runge–Kutta fourth-order method on MATLAB. The impacts of numerous occurring parameters on relevant fields (velocity field, temperature field, and concentration field) are depicted and discussed by plotting graphs. We concluded the curvature parameter, K $K$ reduces the pace of the flow. The impacts of the stretching index, m $m$ and melting parameter, M e $Me$ are also found to reduce flow and temperature field. Furthermore, we noted that the reaction parameter, K n ${K}_{n}$ and its order, n $n$ exhibit opposite impacts on the concentration field. Moreover, the numerical values of skin-friction coefficient and Nusselt number calculated employing bvp4c and Runge–Kutta fourth-order technique are expressed in tabular mode, and these are found in an excellent match. For validation of the results, skin-friction coefficient values were computed using the Runge–Kutta fourth-order technique and bvp4c solver, compared with the existing results, and a good agreement was found.  相似文献   

7.
张艳乔  张金霞  韩吉田  邵莉 《节能》2009,28(11):24-28
采用传热有效度-传热单元数(ε-NTU)的方法建立快速式汽-水换热器传热与流动特性的数学模型,利用MATLAB的SIMULINK建立相应的仿真模型,对快速式汽-水换热器的传热与流动特性进行模拟分析,得到了换热器出口混合水温度和压降随换热器的冷水质量流量及混合阀的冷、热水混合比的变化关系,并进一步分析了温度调节混合阀的调节特性。  相似文献   

8.
Compared to room temperature adsorption, cryo-adsorptive hydrogen storage capacity has been greatly improved, and has become the central issue of the hydrogen storage research. Accurate simulation and optimization for cryo-adsorptive hydrogen storage has important guidance and application value to the experimental research, and the finite element software Comsol Multiphysics™ and system analysis software Matlab/Simulink™ can be used to simulate the cryo-adsorptive hydrogen storage. However, the computational fluid dynamics (CFD) software Fluent™ can provide more information on the heat and mass transfer and the fluid flow than above softwares. Based on the mass, momentum and energy conservation equations, this paper uses the modified Dubinin–Astakhov (D–A) adsorption isotherm model, linear driving force (LDF) model and dynamic thermal boundary condition which are implemented by means of CFD software Fluent to simulate the hydrogen adsorption processes of charging and dormancy in the case of liquid nitrogen cooling. We study the variations of temperature and pressure during the processes of charging and dormancy. The results show that the experimental data is in good agreement with the simulation results. We also analyze the effect of variable specific heat and anisotropic thermal conductivity on the heat and mass transfer and the fluid flow in cryo-adsorptive hydrogen storage system.  相似文献   

9.
A mathematical model for flow and heat transfer has been presented for Johnson–Segalman fluid in a pipe. Employing homotopy analysis method, the developed equations are solved analytically. The velocity and temperature fields are obtained. The dependence of the flow quantities on the material properties and Brinkman number is determined.  相似文献   

10.
The numerical results of the heat transfer and flow characteristics in the hard disk drive tester are presented. The testing of the hard disk drive with keeping drives within the normal and high temperatures in the tester has been introduced as one of the manufacturing processes of the hard disk drive. The cooling air entering the tester is induced by the 10 axial fans into the tester and is impinged the hard disk drives and then discharged to the atmosphere. The kε standard turbulent model is applied to analyze the model. The results obtained from the model are verified by comparing with the measured data. Reasonable agreement is obtained from the comparison between the results obtained from the model and those from the experiment. The numerical results show that the flow and temperature distribution of cooling air are not uniformed. Which none-uniform temperature and accumulated heat are significantly factors to the failure of the hard disk drives. The results of this study are of technology importance for the efficient design and/or approved hard disk drive tester to decrease hard disk drive failure.  相似文献   

11.
The convective heat transfer coefficient was experimentally investigated in an annulus with an inner rotating cylinder to estimate the thermal fatigue of the inner and outer cylinders on the rotating machine. The following three conclusions were obtained: (1) Within the range of the experimental conditions, the heat transfer coefficient did not depend on the axial flow rate; rather, it showed a larger dependence on the inner cylinder rotating speed. (2) The heat transfer coefficient at the top of the labyrinth was about three times as large as that at the bottom. (3) An empirical correlation equation considering the gap between the inner and outer cylinders is proposed, which predicts the heat transfer coefficient on the rotating machine within ±30 percent. © 1997 Scripta Technica. Inc. Heat Trans Jpn Res. 25 (2): 103–119, 1996  相似文献   

12.
The study of electromagnetohydrodynamics (EMHD) of non-Newtonian fluid plays a significant role for optical design, thermal management of electronic components, and various operations of microfluidic devices. The use of parallel geometry is seen in the circulatory system, extrusion process, and respiratory system. By considering various practical applications, in the current study, the Poiseuille flow of an incompressible Casson liquid between the plates is investigated. The effects of MHD, Joule heating, thermal radiation, modified Darcy's law, and chemical reaction have been taken into account. The dimensional governing equations have been converted into dimensionless equations with pertinent nondimensional quantities. The resulting system of nondimensional system of equations has been analytically solved with nondimensional slip boundary conditions. The graphical results have been displayed with various fluid flow parameters. From the current study, it is concluded that the influence of Darcy number and Casson fluid parameter enhances the velocity profile, but the concentration declines with the enhancement of Casson fluid parameter. The radiation parameter and Prandtl number suppress the temperature profile.  相似文献   

13.
The characteristics of heat exchangers with offset-type plate fins for space stations are studied for Reynolds numbers less than 300 based on the hydraulic diameter. A three-dimensional analysis is carried out to study the effects of the following parameters on the heat transfer and the flow characteristics: (a) the thermal boundary layer developing on the bottom plate and on the fins on the plate, (b) the aspect ratio (height/pitch) of the cross section of the flow passage, the fin thickness, the fin length in the direction of the flow, the thermal conductivity of the fluid and the fins, and the Prandtl number of the fluid. The results obtained are as follows. (1) The heat-transfer coefficient on the fin surface is characterized by the thermal-conductivity ratio of fluid to fin material. When the thermal conductivity of the fin material approaches that of the fluid, the heat-transfer coefficient on the fin surface becomes low. (2) The optimum condition of the aspect ratio depends on the value of the thermal-conductivity ratio between the fluid and the fins. (3) When the aspect ratio becomes large or small, the friction factor of offset fins approaches that of fully developed duct flow with the same aspect ratio as the Reynolds number decreases. © 1998 Scripta Technica. Heat Trans Jpn Res, 26(4): 249–261, 1997  相似文献   

14.
Heat transfer characteristics of subcooled flow boiling of FC-72 in a single horizontal circular cross-section microchannel (480 μm i.d., 800 μm o.d., 102 mm long) are presented. Different flow patterns, both in the stable and unstable flow boiling regimes, have been captured using high speed video camera. Data in small, medium, high and very high heat flux cases under small, medium and high mass flux has been presented. Convective heat transfer coefficients in each flow boiling situation have been calculated and presented. Stable flow boiling with alternating bubbly/slug flow, slug/annular flow and annular/mist flow have been observed for heat flux of 150 kW/m2 or higher and mass flux of 1500 kg/m2 s or higher. Back and forth oscillations with flow instabilities have been observed in cases of lower heat and mass fluxes. However, no complete reverse flow in upstream direction has been observed.  相似文献   

15.
Laminar heat transfer problem is analyzed for a disk rotating with the angular speed ωin a co-rotating fluid (with the angular speed Ω). The fluid is swirled in accordance with a forced-vortex law, it rotates as a solid body at β= Ω/ω= const. Radial variation of the disk's surface temperature follows a power law. An exact numerical solution of the problem is obtained basing on the self-similar profiles of the local temperature of fluid, its static pressure and velocity components. Numerical computations were done at the Prandtl numbers Pr = 1(?)0.71. It is shown that with increasing βboth radial and tangential components of shear stresses decrease, and to zero value at β= 1. Nusselt number is practically constant at β= 0(?) 0.3 (and even has a point of a maximum in this region); Nu decrease noticeably for larger βvalues.  相似文献   

16.
The heat transfer and pressure drop characteristics of the flow in convergent and divergent ducts of rectangular crosssection are obtained through the simulation of the flow by a three-dimensional parabolic model. The results show that in both convergent and divergent flows heat transfer decreases and pressure drop increases sharply near the entrance region of the ducts. Generally, the Nusselt number increases with increasing convergent/divergent angle, aspect ratio, or Reynolds number, and the pressure drop increases with increasing convergent/divergent angle or decreasing aspect ratio or Reynolds number in both flows. However, an increasing convergent/divergent angle may also result in a lower pressure drop owing to the recovery of static pressure from dynamic pressure. Furthermore, the pressure drop in a divergent flow is generally lower than that in a convergent flow except in the entrance region. For divergent flows with high divergent angle or high Reynolds number, flow separation may occur.  相似文献   

17.
Complementary heat transfer, pressure distribution, and flow visualization experiments were performed to investigate the effect of yaw on both staggered and in-line tube tanks. The heat transfer measurements were carried out on a row-by-row basis, and pressures were measured internal to the tube banks as well as upstream and downstream. Air was the heat transfer fluid. The visualization experiments revealed that yaw markedly affected the manner in which the flow impinged on the tubes of the in-line array, with a lesser effect of yaw on the flow field in the staggered array. At a given freestream Reynolds number, the Nusselt number generally decreased as the angle of yaw increased. The yaw effect was well correlated for the staggered array, but not so well for the in-line array because of the aforementioned flow field modifications. The in-line-array Nusselt numbers generally exceeded those for the staggered array, a trend which was accentuated at larger yaw. The pressure drop decreased with increasing yaw. In the present operating range, the in-line-array pressure drops were smaller than the corresponding staggered-array values.  相似文献   

18.
Shrouded pin fin arrays with tip clearances (Cg) up to 25% of pin height were experimentally evaluated. Pressure loss was measured (2 × 102 < ReD < 2 × 104) and liquid crystal thermography was employed to obtain temperature distributions from which the impact of Cg on the mean heat transfer rate was determined for 2 × 102 < ReD < 1 × 104. Cg was found to influence pressure drop performance to the greatest extent at low ReD, (<5 × 103), with the effect being significantly diminished by ReD = 1.5 × 104. On a per unit pumping power basis, higher heat transfer rates were observed for dimensionless clearances (Cg/D) less than 0.2 as compared to the non-clearance case.  相似文献   

19.
An experimental investigation was performed to study the heat transfer characteristics of temperature-dependent-property engine-oil inside shell and coiled tube heat exchangers. For this purpose, a well-instrumented set-up was designed and constructed. Three heat exchangers with different coil pitches were selected as the test section for counter-flow configuration. Engine-oil was circulated inside the inner coiled tube, while coolant water flowed in the shell. All the required parameters like inlet and outlet temperatures of tube-side and shell-side fluids, flow rate of fluids, etc were measured using appropriate instruments. An empirical correlation existed in the previous literature for evaluating the shell-side Nusselt number was invoked to calculate the heat transfer coefficients of the temperature-dependent-property fluid flowing in the tube-side of the heat exchangers. Using the data of the present study, an empirical correlation was developed to predict the heat transfer coefficients of the temperature-dependent-property fluid flowing inside the shell and coiled tube heat exchangers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号