首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The minimisation of friction and adhesion during sliding contacts is crucial for the industrial fabrication of many micro/nanodevices (e.g. MEMS/NEMS), as well as in nanotechnological processes, e.g. in nanoimprint lithography where a silicon mould is used to fabricate polymeric nanostructures by imprinting. We have conducted intensive research on the contact between the mould and PMMA polymeric resist film via advanced modelling and computer simulations. The properties of the contacting surfaces have been identified with the atomic force microscope and nanoindentation, as well as wettability tester applied for the identification of the surface free energy. A model of contact has been elaborated and adequate original software was used to calculate the frictional and adhesive forces in particular at the silicon mould/polymeric resist interface.  相似文献   

2.
Nano-textured surfaces (NTSs) can reduce adhesion and friction and thus have potential to increase the reliability of micro-electro-mechanical systems and nano-electro-mechanical systems. However, deformation of the nanotextures severely limits the effectiveness of using NTSs. This article presents a novel concept of nano-surface-engineering by texturing the surface with core–shell nanostructures to produce deformation-resistant nanotextures. The NTSs were produced by thermal evaporation of Al on Si substrates to form Al nanostructures and then depositing amorphous silicon on top of Al by plasma-enhanced chemical vapor deposition. Friction and deformation of the NTSs were studied using a TriboIndenter and a scanning electron microscope. The results show that the novel NTS significantly reduced the coefficients of friction of the surface without any detectable plastic deformations of the nanotextures even after heavy scratches.  相似文献   

3.
The mathematical model of discrete contact between real engineering surfaces has been proposed. The model takes into account the adhesion between surfaces in contact. The analytical expressions for calculating the deformation of a contact and the real (physical) contact area have been obtained. The dimension-less criterion for estimating the influence of adhesive forces on the contact characteristics has been proposed. The effect of various factors on the above characteristics has been analyzed. It has been shown that, at the nanoscale level (asperities of nanoscale size), especially under low contact loads, the influence of adhesive forces is significant.  相似文献   

4.
This paper reports a novel approach for improving the nanotribological properties of silicon (Si) surfaces by topographically and chemically modifying the surfaces. In the first step, Si (100) wafers were topographically modified into nano-pillars by using the photolithography and reactive ion etching (RIE) techniques. Various patterns, including nano-pillars of varying diameters and pitches (distance between pillars), were fabricated. Then, the patterns were coated with a Z-DOL (perfluoropolyether (PFPE)) lubricating film using a dipcoating technique, and this process was followed by thermal treatment. These modified surfaces were tested for their nanotribological properties, namely adhesion and friction forces, using an atomic force microscope (AFM). The results showed that the topographical modification and Z-DOL coating each independently reduced the adhesion and friction forces on the Si surfaces. However, the combination of the two surface treatments was most effective in reducing these forces. This is attributed to the combined effects of the reduction in the real area of contact due to patterning and the low surface energy of the Z-DOL lubricant. Further, it was found that adhesion and friction forces of the surfaces with combined modification varied significantly depending on the diameter of the pillars and the pitch. It is proposed that such a combination of surface modifications promises to be an effective method to improve the nanotribological performance of miniaturized devices, such as MEMS, in which Si is a typical material.  相似文献   

5.
M.D. Pashley  J.B. Pethica  D. Tabor 《Wear》1984,100(1-3):7-31
This paper is part of a long-standing attack on problems of friction and adhesion. It falls into two parts. The first discusses the general mechanism of adhesion and then describes an experimental study of the adhesion and deformation of a model microasperity. This consists of the contact formed between a fine pointed stylus of tungsten and a single crystal of a softer metal (nickel). The experiments are carried out in ultrahigh vacuum and the surfaces are characterized in situ using Auger spectroscopy. The loads range from 0.5 to 1000 μN and contact during loading and unloading is monitored using electrical resistance measurements. With clean surfaces the results suggest that surface forces alone are able to initiate plastic deformation. Oxide monolayers reduce the adhesion but the general behaviour is little changed. In contrast, oxide layers 5 nm thick greatly modify the adhesion and deformation behaviour.

The second part describes microhardness measurements carried out over approximately the same load range. A Berkovitch triangular pyramid is used as the indenter. Some of the indents are studied in the electron microscope but the major hardness determinations are based on depth measurements of the indents formed. These measurements are extremely sensitive and may be conveniently monitored so that the plastic indentation process during loading and the elastic relaxation which occurs on unloading may be recorded. Both the adhesion measurements and the microindentation hardness measurements show that the plastic yield stress of very small volumes may be three or four times larger than the bulk values. The results also show that detailed contact models may be of limited value when dealing with contacts involving plastic deformation.  相似文献   


6.
This paper describes a computational method to calculate the friction force between two rough surfaces. In the model used, friction results from forces developed during elastic deformation and shear resistance of adhesive junctions at the contact areas. Contacts occur between asperities and have arbitrary orientations with respect to the surfaces. The size and slope of each contact area depend on external loads, mechanical properties and topographies of surfaces. Contact force distribution is computed by iterating the relationship between contact parameters, external loads, and surface topographies until the sum of normal components of contact forces equals the normal load. The corresponding sum of tangential components of contact forces constitutes the friction force. To calculate elastic deformation in three dimensions, we use the method of influence coefficients and its adaptation to shear forces to account for sliding friction. Analysis presented in Appendix A gives approximate limits within which influence coefficients developed for flat elastic half-space can apply to rough surfaces. Use of the method of residual correction and a successive grid refinement helped rectify the periodicity error introduced by the FFT technique that was used to solve for asperity pressures. The proposed method, when applied to the classical problem of a sphere on a half-space as a benchmark, showed good agreement with previous results. Calculations show how friction changes with surface roughness and also demonstrate the method's efficiency.  相似文献   

7.
This work investigates the role of carbon nanotube (CNT) tribolayer formation in reducing friction and adhesion of an Al-alloy engine block material (Al-6.5% Si, 319 Al) sliding against a common piston ring coating, namely, CrN coated steel, when tested under a boundary lubricated condition. Coefficient of friction (COF) values were determined using pin-on-disk type tests as a function of sliding distance using CNT added to ethanol and ethanol without CNT addition. Boundary lubricated tests that used ethanol with 0.14 wt.% CNT resulted in a steady-state COF of 0.16, and reduced Al adhesion to the CrN due to the formation of CNT tribolayers on the Al-alloy contact surfaces. Raman spectroscopy and high resolution SEM suggested the CNT fibers in the tribolayers were damaged and possibly subjected to plastic deformation, and the carbon bonds were possibly passivated by the -H and -OH dissociated from ethanol as suggested by FTIR. The low friction and adhesion observed when ethanol with 0.14 wt.% CNT was used was attributed to the sliding-induced bending and curling of the CNT tribolayers, leading to the formation of rolled sections of tribolayer with a cylindrical morphology (diameter of ~?1 µm) that reduced direct contact between Al-alloy and CrN surfaces.  相似文献   

8.
Wetting study of patterned surfaces for superhydrophobicity   总被引:2,自引:0,他引:2  
Bhushan B  Chae Jung Y 《Ultramicroscopy》2007,107(10-11):1033-1041
Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water-repellent properties. A number of studies have been carried out to produce artificial biomimetic roughness-induced hydrophobic surfaces. In general, both homogeneous and composite interfaces are possible on the produced surface. Silicon surfaces patterned with pillars of two different diameters and heights with varying pitch values were fabricated. We show how static contact angles vary with different pitch values on the patterned silicon surfaces. Based on the experimental data and a numerical model, the trends are explained. We show that superhydrophobic surfaces have low hysteresis and tilt angle. Tribological properties play an important role in many applications requiring water-repellent properties. Therefore, it is important to study the adhesion and friction properties of these surfaces that mimic nature. An atomic/friction force microscope (AFM/FFM) is used for surface characterization and adhesion and friction measurements.  相似文献   

9.
The nanotribological properties of amorphous carbon (a-C) films of thickness in the range of 5-85 nm sputtered on Si(1 0 0) substrates were investigated with a surface force microscope (SFM), using a Berkovich diamond tip of nominal radius of curvature approximately equal to 200 nm and contact (normal) loads between 10 and 1200 μN. The dependence of the friction and wear behaviors of the a-C films on normal load and film thickness was studied in terms of nanomechanical properties, images of scratched surfaces, and numerical results obtained from a previous analytical friction model. The increase of the contact load caused the coefficient of friction to decrease initially to a minimum value and, subsequently, to increase to a maximum value, after which, it either remained constant or decreased slightly. The dominant friction mechanism in the low-load range was adhesion, while both adhesion and plowing mechanisms contributed to the friction behavior in the intermediate- and high-load ranges. Thinner (thicker) a-C films yielded higher (lower) friction coefficients for normal loads less than 50 μN (low-load range) and lower (higher) friction coefficients for normal loads greater than 150 μN (high-load range). Elastic and plastic deformation, microcracking, and delamination of the a-C films occurred, depending on the contact load and film thickness ranges. The reduced load-carrying capacity, relatively low effective hardness (strength) obtained with thinner films, and dominant friction and wear mechanisms at each load range illustrate the film thickness and contact load dependence of the nanotribological properties of the sputtered a-C films.  相似文献   

10.
Atomic and friction force microscopy were employed to examine adhesion and friction between dodecanethiol self-assembled monolayers in pure media as well as in two-component heptane/acetone mixtures. In media that did not contain hydrogen bond donors, the pull-off forces were found to be in very good agreement with theoretic predictions based on the Lifshitz theory. As the hydrogen bond donor ability of the medium increased, the adhesion energy was found to be increasingly underestimated by the model, illustrating the importance of the medium–medium interactions outside the contact area in determining the adhesive properties of the contact at the nanoscale. Exceptionally, in n-octanol, the pull-off forces were considerably lower than predicted and a dual slope linear friction–load relation was observed. These observations were rationalized by the formation of physisorbed layers of octanol on the surfaces. The friction–load relationship in the other media was found to be dependent on the magnitude of adhesion. For weakly adhering systems, the friction–load relationship was linear, but as adhesion increased, a sublinear relationship was observed. The data were rationalized by treating the friction as the sum of an adhesion-dependent shear term characterized by a surface shear strength τ and a molecular plowing term characterized by a coefficient of friction μ. Thus, Amontons’ law appears to describe the limiting case of very weak adhesion where viscoelastic plowing is primarily responsible for energy dissipation, while a sublinear friction–load relationship emerges in other situations due to the dissipation of energy in shearing adhesive contacts.  相似文献   

11.
Layers of adsorbed vapor molecules have profound impacts on adhesion and friction. This article reviews fundamental aspects of alcohol and water adsorption effects on adhesion and friction. Capillary force, a component of adhesion force which arises from the liquid meniscus that forms between contacting surfaces, shows a strong vapor partial pressure dependence that is not explained by theory which neglects the adsorbed layer. Theoretical calculations accounting for the adsorbed layer give good agreement with experimentally measured adhesion forces at the nanoscale. Nanoscale friction measurements are also strongly affected by the meniscus and adsorbed layer. Conventional contact mechanics theory could not fully explain the load dependence of nanoscale friction, especially at vapor partial pressures below saturation. However, when the effect of the meniscus is included in theoretical analysis of experimental data, it is found that the friction depends on the shear strength change in the contract area and the dragging of the meniscus formed around the contact. The meniscus dragging term is dominant at low loads but becomes inconsequential at higher loads. When the adsorbed layer assumes structural ordering or causes tribochemical reactions, their adhesion and friction behaviors are further complicated and deviated from simple contact mechanics.  相似文献   

12.
张建  丁建宁  王权  张华中 《机械强度》2007,29(6):923-926
通过在硅微悬臂梁与基底表面上涂覆低表面能的憎水性OTS(CH3(CH2)17SiCl3)膜,以除去接触面间的表面张力;把梁与基底均接地,以除去接触面间的静电力,研究仅有范德华力作用时,硅微悬臂梁结构的抗粘附稳定性.根据两接触面均为粗糙表面的微观实际接触模型,在接触表面产生塑性变形的情况下,计算范德华粘附能大小,并分析表面形貌对其影响,得到粗糙表面接触的微梁抗粘附临界长度.  相似文献   

13.
Surface nano-patterning with Ni nanodot arrays was investigated for adhesion and friction reduction of contacting interfaces. Self-assembled anodized aluminum oxide (AAO) templates in conjunction with thermal evaporation was used to fabricate nano-patterned surfaces with ordered Ni nanodot arrays on Si substrates. Surface morphology of the Ni nanodot-patterned surfaces (NDPSs) was characterized by scanning electron microscopy (SEM). Adhesion and friction studies on a Ni NDPS and a baseline smooth Si(100) surface were conducted using a TriboIndenter employing a diamond tip with 100 μm nominal radius of curvature. The results show that the ordered Ni nanodot-patterning reduced the adhesion forces and coefficients of friction up to 92 and 83%, respectively, compared to those of the smooth silicon surface. Surprisingly, the nanoscale multi-asperity contact between the diamond tip and inhomogeneous Ni NDPSs under low loads follows a continuum contact mechanics model.  相似文献   

14.
This paper presents a novel methodology of producing selectively micro/nano-textured surfaces for applications in micro/nano-electro-mechanical systems, and friction and adhesion/stiction studies on the micro/nano-textured surfaces. The selective textures were produced by ultraviolet-assisted aluminum-induced crystallization of plasma-enhanced chemical vapor deposited amorphous silicon. Friction and adhesion/stiction studies were conducted using a TriboIndenter. The results show that the surface texturing technique significantly reduces both adhesion/stiction forces and coefficients of friction.  相似文献   

15.
利用粗糙平面接触模型,假定表面单个微凸体的接触采用JKR黏着接触模型,同时考虑圆柱体表面的整体变形,建立了粗糙圆柱表面线黏着接触模型,推导出表面等效压力分布方程。把压力方程量纲一化,采用修正Newton-Raphson法对方程进行迭代求解,计算出粗糙圆柱表面存在表面力作用下的等效压力分布曲线。结果表明外载荷不小于零时,接触中心压力为正,微凸体被压缩;而接触边缘处压力为负,微凸体被拉伸,表明黏着区域主要分布在接触边缘。同时计算出接触半宽随外载荷的变化曲线,当外载荷为拉伸力并大于某一临界值时,表面分开。并且与经典的接触模型进行了对比,发现低载时模型之间的差别较大,而载荷比较大时趋于一致。  相似文献   

16.
采用冷压成型、自由烧结工艺分别制备了青铜粉、聚酰亚胺、二硫化钼和石墨填充改性的聚四氟乙烯复合材料,在改装的M-2000型摩擦磨损试验机上考察了材料的二次转移摩擦学性能;用扫描电子显微镜对磨损表面进行观察和分析。结果表明:增加载荷有利于提高转移膜与基底的结合强度;填料种类对PTFE复合材料二次转移膜的摩擦学性能有影响,在本实验条件下(干摩擦、室温、滑动速度为0.42m/s、接触载荷为30N),以PTFE复合材料作为润滑剂提供源使用时,PTFE/MoS2、PTFE/Graphite复合材料形成的二次转移膜最好,PTFE/Bronze复合材料二次转移膜次之,PTFE/PI复合材料形成二次转移膜的能力最差。  相似文献   

17.
A novel tribometer capable of measuring low friction forces and low loads at high speeds has been employed to measure the friction coefficient in a pure sliding, ball-on-flat contact in hydrodynamic lubrication conditions. The tribometer was custom-built for measuring friction at low loads, to allow the authors to investigate the feasibility of using the liquid-slip phenomenon for the lubrication of high-sliding MEMS. The theory behind lubrication with liquid slip and its effect on friction is briefly discussed. Contacting surfaces were treated to create hydrophobic/hydrophilic or hydrophilic/hydrophilic pairs. Hydrophobic surfaces were made by coating mica with a self-assembled silane monolayer while the hydrophilic surfaces used were freshly cleaved mica and plasma-cleaned steel. Experiments were conducted at sliding speeds of up to 2 m/s and loads below 0.2 N. An aqueous glycerol solution was used as lubricant. Results obtained with hydrophilic/hydrophilic surfaces were in accord with hydrodynamic lubrication theory. Tests with hydrophobic/hydrophilic surfaces revealed a reduction in friction, which may be attributed to lubricant slip against the hydrophobic surface.  相似文献   

18.
To achieve extremely high-density magnetic recording of 1Tbit per square inch using conventional technologies, the distance between the recording slider and the rotating disk needs to be less than 5nm. For successful operation, disk and slider surfaces must also be extremely smooth with root-mean-square roughness values of few angstroms. However, ultra-low flying super smooth head-disk interfaces may be exposed to a significant amount of intermittent contact, adhesion, stiction and friction that can cause the interface to collapse. In order to circumvent such problems, many novel techniques have been proposed, such as laser zone texturing, contact pads and surface microtexturing. A reliable method to reduce adhesion and friction in ultra-low flying head-disk interfaces is to control the area of contact and roughen the interface, which allows the slider to fly at sub-5nm with minimal contact. A technique known as preferential texturing provides a unique roughening of the air-bearing surface, where parts of the surface are removed, i.e., subtractive texturing process. In this paper, the effect of preferential texturing (roughening) of slider air-bearing surfaces on the adhesion and friction forces are investigated using quasi-dynamic models. The simulation results show that surface texturing reduces adhesion and friction by reducing the effective area of contact between the slider and media surfaces and by preferentially roughening the interface. The simulation results of friction compare favorably with experimental data.  相似文献   

19.
For a V-belt drive system, the effect of angular speed on the three-dimensional frictional contact behaviors on the contact surfaces between the V-belt and pulley flange is studied in this work. To deal with the frictional contact phenomena for the V-belt drive system, an effective three-dimensional finite element procedure is developed herein. By this procedure, the deformation of the V-belt and the normal/tangential contact forces occurring on the contact surfaces can be estimated accurately. The friction angles of contact points along the edge of the V-belt cross section are also presented for various dynamic friction coefficients. From the computed results, it is found that smaller friction angles are obtained as dynamic friction coefficients get larger. The results achieved are very helpful for the estimation of operation efficiency of the V-belt drive system.  相似文献   

20.
Burton Z  Bhushan B 《Ultramicroscopy》2006,106(8-9):709-719
Super-hydrophobic surfaces as well as low adhesion and friction are desirable for various industrial applications. Certain plant leaves are known to be hydrophobic in nature. These leaves are hydrophobic due to the presence of microbumps and a thin wax film on the surface of the leaf. The purpose of this study is to fully characterize the leaf surface and to separate out the effects of the microbumps and the wax on the hydrophobicity. Furthermore, the adhesion and friction properties of the leaves, with and without wax, are studied. Using an optical profiler and an atomic/friction force microscope (AFM/FFM), measurements on the hydrophobic leaves, both with and without wax, were made to fully characterize the leaf surface. Using a model that predicts contact angle as a function of roughness, the roughness factor for the hydrophobic leaves has been calculated, which is used to calculate the contact angle for a flat leaf surface. It is shown that both the microbumps and the wax play an equally important role in the hydrophobic nature as well as adhesion and friction of the leaf. This study will be useful in developing super-hydrophobic surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号