首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT

In this study, we investigated the friction and wear of rice bran (RB) ceramics—hard porous carbon materials made from rice bran—in a vacuum environment. Sliding friction tests for RB ceramic pin–RB ceramic disk contact were performed using a pin-on-disk-type friction tester installed in a vacuum chamber. The ambient pressure was controlled at 0.02, 0.6, 30, and 105 Pa (i.e., atmospheric pressure). The normal load was 0.49 or 2.94 N, the sliding velocity was 0.01 or 0.1 m/s, and the number of friction cycles was 50,000. The friction coefficient tended to decrease with decreasing ambient pressure for all combinations of normal load and sliding velocity; by contrast, the specific wear rate of the RB ceramic pin and disk specimens tended to increase with decreasing ambient pressure. The friction coefficient exhibited a low value of 0.05 or less at 0.02 Pa. The results suggested that the reduced surface roughness and graphitization of the sliding surface of the RB ceramic pin and disk due to induced friction, as well as the increased ratio between the partial pressure of water vapor and the ambient pressure, are related to the reduction in the friction of RB ceramic–RB ceramic dry sliding contact under vacuum conditions.  相似文献   

2.
The tribological behaviour and surface interactions of titanium sliding against AISI 52100 steel have been studied at 200 and 300 °C in the presence of two commercial imidazolium room temperature ionic liquid (ILs): 1-octyl-3-methylimidazolium tetrafluoroborate (L108) and 1-hexyl-3-methylimidazolium hexafluorophosphate (LP106). L108 presents the higher thermal stability but gives higher friction coefficients and wear rates than LP106, with long running-in periods and high friction values, both at 200 and 300 °C. Friction and wear rates for LP106 are lower and decrease as the temperature increases from 25 to 200 °C. At 200 °C, LP106 shows a constant friction coefficient, without running-in, produces a mild wear on titanium and no surface damage on steel. LP106 fails at 300 °C, close to its degradation temperature, due to tribochemical decomposition through partial dissociation of the hexafluorophosphate anion, with formation of a phosphorus-rich layer on the steel ball, while the titanium wear track surface is heterogeneous, showing regions with the presence of fluoride and others with the presence of phosphate. When the steel ball is substituted for a ruby sphere under the same conditions at 300 °C, a low friction coefficient and mild wear is observed, due to the higher stability of the LP106 lubricant at the ruby–titanium interface. The friction coefficients, wear mechanisms and surface interactions have been studied by means of friction-distance records, SEM, EDX and XPS.  相似文献   

3.
The effects of temperature and sliding distance on the metal-to-metal wear behavior of austenitic Fe-20Cr-1.7C-1Si hardfacing alloy were investigated in air in the temperature range from 25 to 450 °C. The applied contact stress was 55 MPa and the maximum sliding distance was 18 m. In the temperature range from 25 to 200 °C, the weight loss increased linearly with increasing sliding distance. The weight loss increased parabolically with increasing sliding distance up to 18 m at 300 °C, but at 450 °C, the weight loss drastically increased from the beginning of the wear test and became almost saturated above a sliding distance of 3.6 m. The initial friction coefficient was not changed with temperature up to 300 °C. However, at 450 °C, the initial friction coefficient increased abruptly. It was thought to be due to the increasing tendency of adhesive bonding to occur between the two self-mating specimens. At temperatures below 200 °C, the steady state friction coefficient did not change significantly. Above 300 °C, the steady state friction coefficient decreased due to the oxide layers that formed on the worn surfaces during wear.  相似文献   

4.
In this article, friction and wear characteristics of BaCr2O4 ceramics have been investigated using a high-temperature friction and wear tester from room temperature to 800?°C in dry sliding against sintered alumina ball. At room temperature, the friction coefficient and wear rate of BaCr2O4 ceramics are quite high. BaCr2O4 ceramics exhibit low friction coefficients and small wear rates with temperature increasing up to 400?C600?°C. The oxidation reaction of BaCr2O4 during high-temperature wear tests is responsible for the tribological properties. The oxidized product of BaCr2O4 is BaCrO4, which forms a smooth self-lubricating film on the worn surface to effectively reduce friction and wear. However, at 800?°C, severe oxidation reduces the relative density of sintered BaCr2O4 ceramics, and further expedites the materials removal process.  相似文献   

5.
The tribological behaviour of different monolithic and composite ceramics was evaluated in the temperature range between room temperature and 750°C. The test method was oscillating sliding with a ball‐on‐disk arrangement in an SRV machine. Alumina balls were used as counter body. The friction behaviour was determined on‐line, and the wear behaviour was determined from calculations on the basis of wear scar dimensions and profilometric measurements. The friction depends on temperature and shows an increase for most materials for increasing temperature; the smallest friction at all temperatures is found for monolithic TiC. The wear behaviour shows different trends for the different materials. In tests against SiC a maximum of wear is found at 500°C, for TiC at 200°C and for TiB2 at 750°C. The composite ceramics suffer the smallest wear of all materials in the range from 200°C to 500°C. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Laboratory tests can help in the analysis of tribological failures of elements, and improve tribo‐systems by choosing appropriate materials. In order to characterise the friction and wear behaviour of candidate materials, various different test methods have been developed in the past and are still in use. One such method is the reciprocating sliding of a ball against a disc. In the work reported here, the repeatability of friction and wear results was evaluated with ten tests under identical conditions with a steel (100Cr6) or alumina (Al2O3) ball against a steel (100Cr6) disc under unlubricated conditions at room temperature. The influence of ambient humidity on friction and wear behaviour was determined in three additional tests in dry and in moist air, respectively. The repeatability of friction coefficient in normal air was better than 5% for alumina/100Cr6 and 12% for 100Cr6/100Cr6, while the repeatability of volumetric wear was slightly better than 10% for alumina/steel, and slightly worse than 10% for steel/steel. For both couples the coefficient of friction is lowest in moist air and about 50% higher in dry air. The coefficient of wear is also least in moist air and higher by a factor of 3(5) in dry air for tests with a 100Cr6 (alumina) ball.  相似文献   

7.
Metal‐free amorphous carbon (a‐C:H) coatings with 15% hydrogen were deposited on bearing steel surfaces. The friction and wear performance of these specimens was characterised in oscillating sliding tests with a ball‐on‐flat geometry. Balls of four ceramic and four metallic materials were investigated in tests at room temperature. Special attention was paid to the effect of moisture by testing in dry, normal, and moist air. The effect of water vapour on the friction and wear of the a‐C:H coatings was quite different for the different counterbody materials. The wear was in all cases very low, with a coefficient of wear below 10−7 mm3/N m for most cases. The coefficient of friction was also very low, between 0.04 and 0.12 for most of the tests. The smallest wear and friction coefficients were found for oxide ceramics, while during tests against SiC and Si3N4 the coating was worn through during the test. The effects of counterbody material and the humidity of the surrounding air are discussed in terms of friction and wear mechanisms.  相似文献   

8.
《Wear》2006,260(1-2):40-49
The tribological behaviour of TiCN coating prepared by unbalanced magnetron sputtering is studied in this work. The substrates made from austenitic steel were coated by TiCN coatings during one deposition. The measurements were provided by high temperature tribometer (pin-on-disc, CSM Instruments) allowing measuring the dependency of friction coefficient on cycles (sliding distance) up to 500 °C. The evolution of the friction coefficient with the cycles was measured under different conditions, such as temperature or sliding speed and the wear rate of the ball and coating were evaluated. The 100Cr6 balls and the Si3N4 ceramic balls were used as counter-parts. The former were used at temperatures up to 200 °C, the latter up to 500 °C. The wear tracks were examined by optical methods and SEM. The surface oxidation at elevated temperatures and profile elements composition of the wear track were also measured.The experiments have shown considerable dependency of TiCN tribological parameters on temperature. Rise in temperature increased both friction coefficient and the wear rate of the coating in case of 100Cr6 balls. The main wear mechanism was a mild wear at temperatures up to 200 °C; fracture and delamination were dominating wear mechanisms at temperatures from 300 to 500 °C.  相似文献   

9.
In this study, we investigated the microstructural, mechanical, and tribological properties of rice husk (RH)-based carbon carbonized at various carbonizing temperatures under dry conditions. All samples exhibited amorphous carbon structures and the X-ray diffraction spectra of the samples carbonized at 1300 and 1400?°C indicated the presence of a polymorphic crystals of silica. The hardness increased with temperature due to the densification of the structure and the presence of the hard crystalline silica. At low normal loads, the mean friction coefficient of the material decreased as the carbonizing temperature was increased from 600 to 800?°C and slightly decreased as the carbonizing temperature was further increased from 800 to 1400?°C. At the highest load, all samples, except for that carbonized at 600?°C, exhibited extremely low friction coefficients (around 0.05). The wear rates of the all samples were smaller than 10?5 mm3/N·m, indicating that RH carbon exhibits sufficient wear resistance. A Raman spectroscopic analysis of the worn surface of a steel ball revealed that the transfer layer at 600?°C had a less graphitic structure compared to the other carbonizing temperature. Based on these findings, we recommend an optimal carbonizing temperature for applications of sliding materials exposed to dry sliding contact.  相似文献   

10.
Friction and wear behaviors of diamond-like carbon (DLC) film in humid N2 (RH-100%) sliding against different counterpart ball (Si3N4 ball, Al2O3 ball and steel ball) were investigated. It was found that the friction and wear behaviors of DLC film were dependent on the friction-induced tribochemical interactions in the presence of the DLC film, water molecules and counterpart balls. When sliding against Si3N4 ball, a tribochemical film that mainly consisted of silica gel was formed on the worn surface due to the oxidation and hydrolysis of the Si3N4 ball, and resulted in the lowest friction coefficient and wear rate of the DLC film. The degradation of the DLC film catalyzed by Al2O3 ball caused the highest wear rate of DLC film when sliding against Al2O3 ball, while the tribochemical reactions between DLC film and steel ball led to the highest friction coefficient when sliding against steel ball.  相似文献   

11.
Abstract

Mechanical components in tribological systems exposed to elevated temperatures are gaining increased attention since more and more systems are designed to operate under extreme conditions. In hot metal forming, the effect of temperature on friction and wear is especially important since it is directly related to process economy (tool wear) and quality of the produced parts (friction between tool and workpiece). This study is therefore focused on fundamental understanding pertaining to the tribological characteristics of prehardened hot work tool steel during sliding against 22MnB5 boron steel. The tribological tests were carried out using a high temperature reciprocating sliding friction and wear tester under a normal load of 31 N (corresponding to a contact pressure of 10 MPa), a sliding speed of 0·2 m s?1 and temperatures ranging from 40°C to 800°C. It was found that friction coefficient and specific wear rate decreased at elevated temperature because of formation of compacted wear debris layers on the surfaces.  相似文献   

12.
玻璃陶瓷材料与轴承钢表面摩擦磨损的试验研究   总被引:1,自引:0,他引:1  
高春甫  白雪清  鄂世举 《润滑与密封》2007,32(4):121-122,126
在盘销式摩擦磨损试验机上考察了氟金云母玻璃陶瓷与轴承钢的摩擦磨损性能,在不同载荷条件下,测试了摩擦因数和玻璃陶瓷的磨损率,用金相显微镜观察和分析磨损表面形貌,并探讨了玻璃陶瓷材料的磨损机制。结果表明:在低载荷条件下,摩擦因数较低;随着载荷的增加,摩擦副的摩擦因数比较稳定,氟金云母玻璃陶瓷与轴承钢的平均摩擦因数为0.095。玻璃陶瓷和轴承钢的磨损率存在波动,其对磨过程以磨料磨损为主。  相似文献   

13.
Diamond-like carbon (DLC) and microdimples are two potential surface modification techniques that are extensively studied to be utilized in biotribological interfaces in order to reduce the friction coefficient and wear rate. However, in situ observation of bovine serum–lubricated DLC and microdimpled surface contacts are not well understood. In this study, a DLC-coated and a microdimpled steel ball rubbing against a Cr-coated glass disk, where 25% bovine serum was used as a lubricant and the temperature was maintained at 37°C, were investigated. The behaviors of ithe nterface were ca`ptured using optical interferometry and the friction coefficients were simultaneously measured using a torque sensor. The experimental results reveal that DLC/glass sliding is scuffing-free, with a lower friction coefficient; however, the formation of a lubricating film is insignificant. On the other hand, the dimples retained lubrication and, as a result, the wear of the glass disk was minimized; however, the friction coefficient was not reduced. Therefore, DLC and microdimples individually have few improved tribological features, but their combination should be considered to maximize performance.  相似文献   

14.
While the use of ORNL developed high-thermal-conductivity graphitic foam materials has been focused on thermal management applications, recent experiments have revealed their potential as bearing surfaces as well. The three primary tribological advantages are: (1) they can efficiently remove frictional heat, (2) their natural porosity can trap wear debris, and (3) their porosity can serve as a lubricant reservoir for the contact surface. A series of pin-on-disk experiments were conducted at both room temperature and 400 °C to compare the sliding friction and wear characteristics of the densified graphitic foam (mated against M-50 tool steel or against alumina) to those of conventional bearing materials like graphite, bearing bronze, poly- tetrafluoroethylene, bearing steel, and a Co-based superalloy. At room temperature and under low contact pressure, the tribological behavior of the densified graphitic foam material was comparable to that of graphite and better than that of other bearing materials. At 400 °C, traditional graphite exhibited a dusting wear regime accompanied by a high friction coefficient. In contrast, the graphitic foam demonstrated an ability to maintain low friction and wear at that temperature.  相似文献   

15.
Friction and wear tests between a stationary block and a rotating ring under lubrication with molybdenum disulphide (MoS2) were carried out at room temperature at a sliding distance of 500 m. Silicon nitride and cemented carbide blocks were pressed against a bearing steel ring, silicon nitride-bearing steel and cemented carbide-bearing steel pairs, by a load of 1600 N. The effect of molybdenum disulphide upon the coefficient of friction and the wear of the steel ring was discussed for both pairs in comparison with mineral oil lubricants. Molybdenum disulphide was more effective in reducing the coefficient of friction and the wear of the ring than the oil lubricants. Various mechanical pretreatment for forming MoS2 film on the ring surface prior to the sliding tests were also considered. The mechanical pretreatment enabled the sliding test with the low friction coefficient even without lubrication over the sliding distance of 500 m. In general, the coefficient of friction and wear loss of the steel ring were smaller in the silicon nitride-bearing steel pair than in the cemented carbide-bearing steel pair.  相似文献   

16.
Dry sliding wear tests were performed for 3Cr13 steel with various tempered states at 25–400°C; wear and friction characteristics as well as the wear mechanism were explored. With an increase in test temperature, the wear rate decreased accompanied by an increase in tribo-oxides. The fluctuation of friction coefficient was slight at 25–200°C but became violent at 400°C. At 25–200°C, adhesive wear prevailed due to trace or less tribo-oxides; at 400°C, oxidative wear prevailed with the predominant tribo-oxides of Fe3O4 and Fe2O3. It can be suggested that the antioxidation of the stainless steel postponed the occurrence of oxidative wear to a higher test temperature. For adhesive wear, the wear resistance, roughly following Archard's rule, was directly proportional to hardness besides the specimen tempered at 500°C with grain boundary brittleness. But for elevated-temperature wear, a better wear resistance required thermal stability and an appropriate combination of hardness and toughness.  相似文献   

17.
Laser surface texturing (LST) was performed on the nickel-based composites by a Nd:YAG pulsed laser and the regular-arranged dimples with diameter of 150 μm were fabricated on their surfaces. The textured surfaces were smeared with molybdenum disulfide powder. The tribological properties of the textured and filled composites were investigated by carrying out sliding wear tests against an alumina ball as a counterface using a high temperature ball-on-disk tribometer. The tests were conducted at a sliding speed of 0.4 m/s and at normal loads ranging from 20–100 N and from room temperature to 600 °C. The friction coefficient of nickel-based composite textured and smeared with molybdenum disulfide was found to reduce from 0.18 to 0.1 at the temperature range from 200 to 400 °C. The texture with a dimple density of 7.1% was observed to prolong wear life of MoS2 film by more than four times in comparison to the texture with other dimple densities. The lubricious oxide particles stored in the dimples reduce friction coefficient at elevated temperatures and compensate for the extra lubricant owing to the degradation of MoS2 caused by its oxidation at high temperatures.  相似文献   

18.
A sputter-deposited bilayer coating of gold and chromium was investigated as a potential solid lubricant to protect alumina substrates in applications involving sliding at high temperatures. The lubricant was tested in a pin-on-disk tribometer with coated alumina disks sliding against uncoated alumina pins. Three test parameters—temperature, load and sliding velocity—were varied over a wide range in order to determine the performance envelope of the Au/Cr solid lubricant film. The tribo-tests were run in air at temperatures of 25° to 1000°C, under loads of 4.9 to 49.0 N and at sliding velocities from 1 to 15 ms?1. Posttest analyses included surface profilometry, wear factor determination and SEM/EDS examination of worn surfaces.

Compared to unlubricaled Al2O3 sliding, the use of the Au/Cr film reduced friction by 30 to 50 percent and wear by one to two orders of magnitude. Increases in test temperature resulted in lower friction and the Au/Cr film continued to provide low friction, about 0.3, even at 1000°C. Pin wear factors and friction were largely unaffected by increasing loads up to 29.4 N. Sliding velocity had essentially no effect on friction, however, increased velocity reduced coaling life (total sliding distance). Based upon these research results, the Au/Cr film is a promising lubricant for moderately loaded, low-speed applications operating at temperatures as high as 1000°C.  相似文献   

19.
Due to their thermal stability and high strength, polyimides are an aromatic type of polymer that is used in sliding equipment functioning under high loads and elevated temperature. However, its tribological behaviour under high temperature and atmospheric conditions is not fully understood. It has been reported that a transition from high towards lower friction occurs ‘somewhere’ in the temperature region between 100°C and 200°C; however, a correlation with changes in the polyimide molecular structure remains difficult to illustrate and it is not certain whether or not this transition is correlated to lower wear. In the present work sliding experiments under controlled bulk temperatures between 100°C and 260°C are performed. A transition is observed in both friction and wear at 180°C which is further explained by microscopic analysis of the transfer film on the steel counterface and Raman spectroscopy of the worn polymer surfaces. A close examination of the spectra reveals transitions in relative intensity of certain absorption bands, pointing to different orientation effects of the molecular conformation at the polymer sliding surface at 180°C. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
A series of blends with Polytetrafluroethylene (PTFE) powder and Polyetheretherketone (PEEK) was developed by varying the PTFE contents in steps of 5 wt.% from 0 to 20 wt.%. The composites were evaluated for their friction and wear properties at room temperature as well as high temperature in low amplitude oscillating wear (LAOW) mode against steel (100 Cr 6) ball against polymer plate. The same blends were also evaluated in abrasive wear mode to study the influence of harsh operating conditions on wear and friction performance. Incorporation of PTFE benefited PEEK in various ways such as it increased the tribo-utility of the latter by increasing its limiting load value, removing its stick-slip tendency, lowering coefficient of friction and specific wear rate significantly. With increase in PTFE content, benefits to the wear performance increased regularly. This was not the case for friction coefficient. Lowest μ was recorded for 15% PTFE contents. The enhancement in wear and friction performance, however, was at the cost of strength properties which decreased substantially with increase in PTFE content. At 100 °C, friction coefficient and wear rates of all blends increased marginally. In abrasive wear mode, on the other hand, PTFE filled PEEK showed poorer wear resistance than neat PEEK. This was correlated with strength properties and it was observed that these blends closely followed the predictions of Ratner–Lancaster plot. SEM was used to examine the micro-structural features of worn surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号