首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose and investigate an application of the method of fundamental solutions (MFS) to the radially symmetric inverse heat conduction problem (IHCP). In the radially symmetric IHCP data on an inner fixed boundary is determined from Cauchy data given on an outer boundary. This is an inverse and ill-posed problem, and we employ and generalize the MFS regularization approach of Johansson et al. (2008) for the time-dependent heat equation to obtain a stable and accurate numerical approximation with small computational cost.  相似文献   

2.
As to recover a time-dependent heat source under an extra temperature measured at an interior point, we can reformulate it to be a three-point boundary value problem. We can develop a coupled boundary integral equation method, wherein by selecting two sets of adjoint test eigenfunctions in two sub domains and using polynomials as the trial functions of unknown heat source, the time-dependent heat source is recovered very well and quickly. Four numerical examples, including a discontinuous one, demonstrate the efficiency for the ill-posed inverse heat source problem in a large time duration and under a large noise up to 10–30%. Then, selecting three sets of adjoint test eigenfunctions in three domains: problem domain and two sub domains, and using the Pascal polynomials as trial functions, the unknown space-time-dependent heat source is recovered very fast and accurately from the solution of three coupled boundary integral equations.  相似文献   

3.
In this paper we investigated a fractional-diffusion inverse heat conduction problem (FIHCP). The numerical computation of fractional derivatives from noisy data is a typical ill-posed problem. Based on the fractional derivative of radial basis functions (RBFs), we proposed an effective numerical scheme to alleviate the difficulty of the ill-posed FIHCP. To demonstrate the efficiency and stability of the proposed scheme, we provide some theoretical analysis and numerical results of the proposed method.  相似文献   

4.
In this paper, we solve two types of inverse heat source problems: one recovers an unknown space-dependent heat source without using initial value, and another recovers both the unknown space-dependent heat source and the initial value. Upon inserting the adjoint Trefftz test functions into Green’s second identity, we can retrieve the unknown space-dependent heat source by an expansion method whose expansion coefficients are derived in closed form. We assess the stability of the closed-form expansion coefficients method by using the condition numbers of coefficients matrices. Then, numerical examples are performed, which demonstrates that the closed-form expansion coefficient method is effective and stable even when it imposes a large noise on the final time data. Next, we develop a coupled iterative scheme to recover the unknown heat source and initial value simultaneously, under two over specified temperature data at two different times. A simple regularization technique is derived to overcome the highly ill-posed behavior of the second inverse problem, of which the convergence rate and stability are examined. This results in quite accurate numerical results against large noise.  相似文献   

5.
We consider the inverse problem of determining the time-dependent thermal conductivity and the transient temperature satisfying the heat equation with initial data, Dirichlet boundary conditions, and the heat flux as overdetermination condition. This formulation ensures that the inverse problem has a unique solution. However, the problem is still ill-posed since small errors in the input data cause large errors in the output solution. The finite difference method is employed as a direct solver for the inverse problem. The inverse problem is recast as a nonlinear least-squares minimization subject to physical positivity bound on the unknown thermal conductivity. Numerically, this is effectively solved using the lsqnonlin routine from the MATLAB toolbox. We investigate the accuracy and stability of results on a few test numerical examples.  相似文献   

6.
An inverse heat conduction problem for nanoscale structure is studied. The conduction phenomenon is modeled using the Boltzmann transport equation. Phonon-mediated heat conduction in one dimension is considered. One boundary is exposed to an unknown temperature and the other boundary, where temperature observation takes place, is subject to a known boundary condition. A sequential scheme with constant function specification is employed for inverse estimation of the unknown temperature. Sample results are presented and discussed.  相似文献   

7.
We consider an inverse problem of a nonlinear heat conduction equation for recovering unknown space-dependent heat source and initial condition under Cauchy-type boundary conditions, which is known as a sideways heat equation. With the aid of two extra measurements of temperature and heat flux which are being polluted by noisy disturbances, we can develop a Lie-group differential algebraic equations (LGDAE) method to solve the resulting differential algebraic equations, and to quickly recover the unknown heat source and initial condition simultaneously. Also, we provide a simple LGDAE method, without needing extra measurement of heat flux, to recover the above two unknown functions. The estimated results are quite promising and robust enough against large random noise.  相似文献   

8.
This paper deals with an inverse problem, which consists of the experimental identification of line heat sources in a homogeneous solid in transient heat conduction. The location and strength of the line heat sources are both unknown. For a single source we examine the case of a source which moves in the system during the experiment. The identification procedure is based on a boundary integral formulation using transient fundamental solutions. The discretized problem is non-linear if the location of the line heat sources is unknown. In order to solve the problem we use an iterative procedure to minimize a cost function comparing the modelled heat source term and the measurements. The proposed numerical approach is applied to experimental 2D examples using measurements provided by an infrared scanner for surface temperatures and heat fluxes. In some particular examples, internal thermocouples can be used. A time regularization procedure associated to future time-steps is used to correctly solve the ill-posed problem.  相似文献   

9.
CalculationErrorofNumericalSolutionforaBoundary-ValueInverseHeatConductionProblemCalculationErrorofNumericalSolutionforaBound...  相似文献   

10.
The objective of this article is to study the performance of iterative parameter and function estimation techniques to solve simultaneously two unknown functions (quadratic in time, and linear in time and space) using transient inverse heat conduction method in conjunction with a geometrical domain decomposition approach, in cylindrical coordinates. For geometrical decomposition of physical domain, a multi-block method has been used. The numerical scheme for the solution of the governing partial differential equations is the finite element method. The results of the present study for a configuration composed of two joined disks with different heights are compared to those of exact heat source and temperature boundary condition using inverse analysis. Good agreement between the estimated results and exact functions has been observed for parameter estimation techniques in contrast to those of function estimation approach. In summary, the results show that the function estimation technique is sensitive to the location of measurement points, but is useful to estimate unknown functions without a priori knowledge of the functions' spatial and/or temporal distributions. However, the function estimation technique suffers from a drawback: its implementation and data extraction are less straightforward than parameter estimation method. Finally, it is shown that the use of geometrical domain decomposition offers the possibility of developing a robust inverse analysis code for general purpose heat conduction problems.  相似文献   

11.
This article deals with an inverse problem, which consists of the location and strength identification of multiple-point heat sources in transient heat conduction. The identification procedure is based on a boundary integral formulation using space and time Green functions. The discretized problem is nonlinear if the location of the point heat sources is unknown. In order to reduce the sensitivity of the solution to errors, we use the future time step procedure associated to a Tikhonov regularization procedure. The proposed numerical approach is applied to numerical two- and three-dimensional examples.  相似文献   

12.
We consider a backward heat conduction problem (BHCP) in a slab, subject to noisy data at final time. The BHCP is known to be highly ill-posed. In order to stably solve the BHCP by a numerical method, we employ a new post-conditioner in the linear system obtained by the method of fundamental solutions (MFS), and then we use the conjugate gradient method (CGM) to solve the post-conditioned linear system to determine the unknown coefficients used in the expansion by the MFS. The method can retrieve the initial data rather well, with a certain degree of accuracy. Several numerical examples of the BHCP demonstrate that the present method is applicable, even for those of strongly ill-posed problems with a large value of final time and with large noise. We also demonstrate that the CGM alone is not enough to accurately recover the initial temperature.  相似文献   

13.
The inverse conduction problem arises when experimental measurements are taken in the interior of a body, and it is desired to calculate temperature and heat flux values on the surface. The problem is shown to be ill-posed, as the solution exhibits unstable dependence on the given data functions. A special solution procedure is developed for the one-dimensional case which replaces the heat conduction equation with an approximating hyperbolic equation. If viewed from a new perspective, where the roles of the spatial and time variables are interchanged, then an initial value problem for the damped wave equation is obtained. Since the formulation is well-posed, both analytic and numerical solution procedures are readily available. Sample calculations confirm that this approach produces consistent, reliable results for both linear and nonlinear problems.  相似文献   

14.
INTRODUCTI0NInverseradiati0nproblemshavedefinedasubjectofinterestf0rthepast3Oyears0nsoandthereex-istsac0nsiderablebody0fknowledgesurroundingthesubjectthathasbeenextensivelyreviewedinaseries0fpapersbyM.C.rmick[1-4].Theyarecon-cernedwiththedeterminati0noftheradiativepr0p-ertiesandthetemperaturedistributionsofmediaus-ingvari0ustypesofradiationmeasurements.Despitetherelativelylargeinterestexpressedininverseradia-tionproblems,mostoftheworkfocusedontheinverseestimati0noftemperaturedistributions…  相似文献   

15.
We consider the estimation of the volumetric heat capacity and the thermal conductivity as distributed parameters. The measurement scheme consists of sequentially heating the boundary of the object in different source locations and measuring the induced temperature evolutions in different measurement locations on the boundary. The estimation of the distributions of volumetric heat capacity and thermal conductivity based on these boundary data is an ill-posed inverse boundary value problem. We propose an approach which is based on transient data on the boundary and the modelling of the unknown coefficients as Markov random fields. The intended applications are non-destructive retrieval of defects as well as the estimation of macroscopic characteristics of novel materials. We evaluate the proposed approach by a numerical simulation.  相似文献   

16.
The paper deals with the inverse determination of heat sources in steady 2-D heat conduction problem. The problem is described by Poisson equation in which the function of the right hand side is unknown. The identification of the strength of a heat source is given by using the boundary condition and a known value of temperature in chosen points placed inside the domain. For the solution of the inverse problem of identification of the heat source the method of fundamental solution with radial basis functions is proposed. The accurate results have been obtained for five test problems where the analytical solutions were available.  相似文献   

17.
In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to solve the inverse hyperbolic heat conduction problem in estimating the unknown time-dependent base heat flux of an annular fin from the knowledge of temperature measurements taken within the fin. The inverse solutions will be justified based on the numerical experiments in which two specific cases to determine the unknown base heat flux are examined. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of measurement errors upon the precision of the estimated results is also investigated. Results show that an excellent estimation on the time-dependent base heat flux can be obtained for the test cases considered in this study.  相似文献   

18.
This paper presents an efficient inverse analysis technique based on a sensitivity coefficient algorithm to estimate the unknown boundary conditions of multidimensional steady and transient heat conduction problems. Sensitivity coefficients were used to represent the temperature response of a system under unit loading conditions. The proposed method, coupled with the sensitivity analysis in the finite element formulation, is capable of estimating both the unknown temperature and heat flux on the surface provided that temperature data are given at discrete points in the interior of a solid body. Inverse heat conduction problems are referred to as ill-posed because minor inaccuracy or error in temperature measurements cause a drastic effect on the predicted surface temperature and heat flux. To verify the accuracy and validity of the new method, two-dimensional steady and transient problems are considered. Their surface temperature and heat flux are evaluated. From a comparison with the exact solution, the effects of measurement accuracy, number and location of measuring points, a time step, and regularization terms are discussed. © 1998 Scripta Technica. Heat Trans Jpn Res, 26(6): 345–359, 1997  相似文献   

19.
We study the stable numerical identification of an unknown portion of the boundary on which either a Dirichlet or a Robin boundary condition is provided, while additional Cauchy data are given on the remaining known part of the boundary of a two-dimensional domain, in the case of steady state anisotropic heat conduction problems. This inverse geometric problem is solved using the method of fundamental solutions (MFS) in conjunction with the Tikhonov regularization method [53]. The optimal value for the regularization parameter is chosen according to Hansen’s L-curve criterion [17]. The stability, convergence, accuracy and efficiency of the proposed method are investigated by considering several examples in both smooth and piecewise smooth geometries.  相似文献   

20.
Two-dimensional transient inverse heat conduction problem (IHCP) of functionally graded materials (FGMs) is studied herein. A combination of the finite element (FE) and differential quadrature (DQ) methods as a simple, accurate, and efficient numerical method for FGMs transient heat transfer analysis is employed for solving the direct problem. In order to estimate the unknown boundary heat flux in solving the inverse problem, conjugate gradient method (CGM) in conjunction with adjoint problem is used. The results obtained show good accuracy for the estimation of boundary heat fluxes. The effects of measurement errors on the inverse solutions are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号