首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

In this paper, we analyze numerically the effects of the inclination angle on natural convection heat transfer and entropy generation characteristics in a two-dimensional square enclosure saturated with a porous medium. There is a significant alteration in Nusselt number with the orientation of the enclosure at higher values of Rayleigh number. It reveals that the variation of entropy generation rate with the inclination angle is significant for higher values of Darcy number. The dominant source of irreversibility is due to heat transfer at low values of Darcy number, whereas entropy generation due to fluid flow dominates over that due to heat transfer for larger values of Darcy number.  相似文献   

2.
Abstract

The present study analyses numerically the unsteady heat transfer and entropy generation characteristics in a two-dimensional porous enclosure embedded with two heated circular cylinders at different positions at the vertical mid-plane. The heat transfer is primarily due to conduction for lower values of Darcy number (10?4), while heat transfer by convection becomes significant for higher values of Darcy number (10?3, 10?2). Contrasting features are observed in the variation of time-average Nusselt number with interspacing distance. The major contributor of irreversibility is the entropy generation due to heat transfer for lower values of Darcy number, while for larger values of Darcy number, it varies with Rayleigh number.  相似文献   

3.
Optimization of industrial processes for higher energy efficiency may be effectively carried out based on the thermodynamic approach of entropy generation minimization (EGM). This approach provides the key insights on how the available energy (exergy) is being destroyed during the process and the ways to minimize its destruction. In this study, EGM approach is implemented for the analysis of optimal thermal mixing and temperature uniformity due to natural convection in square cavities filled with porous medium for the material processing applications. Effect of the permeability of the porous medium and the role of distributed heating in enhancing the thermal mixing, temperature uniformity and minimization of entropy generation is analyzed. It is found that at lower Darcy number (Da), the thermal mixing is low and the heat transfer irreversibility dominates the total entropy generation. In contrast, thermal mixing is improved due to enhanced convection at higher Da. Friction irreversibility is found to dominate the total entropy generation for higher Prandtl number (Pr) fluids at higher Da, whereas the heat transfer irreversibility dominates the total entropy generation for lower Pr fluids. Based on EGM analysis, it is established that larger thermal mixing at high Darcy number may not be always recommended as the total entropy production is quite large at high Darcy number. Overall, it is found that the distributed heating methodology with multiple heat sources may be an efficient strategy for the optimal thermal processing of materials.  相似文献   

4.
Entropy generation plays a significant role in the overall efficiency of a given system, and a judicious choice of optimal boundary conditions can be made based on a knowledge of entropy generation. Five different boundary conditions are considered and their effect of the permeability of the porous medium, heat transfer regime (conduction and convection) on entropy generation due to heat transfer, and fluid friction irreversibilities are investigated in detail for molten metals (Pr = 0.026) and aqueous solutions (Pr = 10), with Darcy numbers (Da) between 10?5–10?3 and at a representative high Rayleigh number, Ra = 5 × 105. It is observed that the entropy generation rates are reduced in sinusoidal heating (case 2) when compared to that for uniform heating (case 1), with a penalty on thermal mixing. Finally, the analysis of total entropy generation due to variation in Da and thermal mixing and temperature uniformity indicates that, there exists an intermediate Da for optimal values of entropy generation, thermal mixing, and temperature uniformity.  相似文献   

5.
A Pressure-velocity solution for natural convection for fluid saturated heat generating porous medium in a square enclosure is analysed by finite element method. The numerical solutions obtained for wide range of fluid Rayleigh number, Raf, Darcy number, Da, and heat generating number, Qd. The justification for taking these non-dimensional parameters independently is to establish the effect of individual parameters on flow patterns. It has been observed that peak temperature occurs at the top central part and weaker velocity prevails near the vertical walls of the enclosure due to the heat generation parameter alone. On comparison, the modified Rayleigh number used by the earlier investigators[4,6], can not explain explicitly the effect of heat generation parameter on natural convection within an enclosure having differentially heated vertical walls. At higher Darcy number, the peak temperature and peak velocity are comparatively more, resulting in better enhancement of heat transfer rate.  相似文献   

6.
Entropy generation of an Al2O3–water nanofluid due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subject to different side‐wall temperatures using a nanofluid for natural convection flow. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number between 104 and 107 and volume fraction between 0 and 0.05. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation, average entropy generation, and average Bejan number are determined. The results are compared for a pure fluid and a nanofluid. It is totally found that the heat transfer, and entropy generation of the nanofluid is more than the pure fluid and minimum entropy generation and Nusselt number occur in the pure fluid at any Rayleigh number. Results depict that the addition of nanoparticles to the pure fluid has more effect on the entropy generation as the Rayleigh number goes up.  相似文献   

7.
The problem of laminar natural convection from a horizontal cylinder with multiple equally spaced high conductivity fins on its outer surface was investigated numerically. The effect of several combinations of number of fins and fin height on the average effective Nusselt number was studied over a wide range of Rayleigh numbers. The results showed that there was an optimal combination of number of fins and fin height for maximum heat transfer from the cylinder for a given value of Rayleigh number. A high number of short fins slightly decreased the heat transfer from the cylinder. The calculated velocity and temperature profiles also were used to study the total entropy generation. The total entropy production was dominated by entropy generation due to thermal effects. The exception was at Ra D = 103 and a large cylinder diameter where entropy generation was dominated by entropy generation due to viscous effects. This information can be used to access the changes in the thermodynamic efficiency due to the addition of fins to enhance the natural convection heat transfer from a horizontal cylinder.  相似文献   

8.
The investigation of entropy generation is highly desirable for the optimization of the thermal systems to avoid larger energy wastage and ensure higher heat transfer rate. The numerical investigation of natural convection within enclosures with the concave and convex horizontal walls involving the Rayleigh–Bénard heating is performed via entropy generation approach. The spatial distributions of the temperature (θ), fluid flow (ψ), entropy generation due to heat transfer and fluid friction (Sθ and Sψ) are discussed extensively for various Rayleigh numbers and Prandtl numbers involving various wall curvatures. A number of complex patterns of spatial distributions of fluid flow and temperature for cavities with concave or convex isothermal walls (top and bottom) have been obtained. The zones of high entropy generation for temperature and fluid flow are detected within cavities with concave and convex horizontal walls. The optimal situation involves the high heat transfer rate with moderate or low entropy generation. Overall, case 3 (highly concave) is found to be optimal over cases 1 and 2 (concave) and cases 1–3 (convex) for all Pr and Ra.  相似文献   

9.
In the present study, entropy generation in rectangular cavities with the same area but different aspect ratios is numerically investigated. The vertical walls of the cavities are at different constant temperatures while the horizontal walls are adiabatic. Heat transfer between vertical walls occurs by laminar natural convection. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation due to heat transfer and fluid friction, the local Bejan number and local entropy generation number are determined and related maps are plotted. The variation of the total entropy generation and average Bejan number for the whole cavity volume at different aspect ratios for different values of the Rayleigh number and irreversibility distribution ratio are also evaluated. It is found that for a cavity with high value of Rayleigh number (i.e., Ra = 105), the total entropy generation due to fluid friction and total entropy generation number increase with increasing aspect ratio, attain a maximum and then decrease. The present results are compared with reported solutions and excellent agreement is observed. The study is performed for 102 < Ra < 105, 10− 4 < ? < 10− 2, and Pr = 0.7.  相似文献   

10.
Heat transfer from a pipe in a soil heating system has been numerically examined in this study. The Brinkman-extended Darcy equations are used to model the flow in the soil while Navier--Stokes equations are used for that above the soil. A parametric study has been performed to investigate the effects of Rayleigh number, Darcy number, and air layer thickness on the flow patterns and heat transfer rates. The results show that heat transfer increases with the Rayleigh number, but the convective strength decreases with a reduction in the Darcy number. The present results confirm the existence of a critical fluid layer thickness that leads to a minimum heat transfer from the pipe. However, the critical layer thickness is a more complicated function of Rayleigh number and Darcy number than that reported in the previous studies.  相似文献   

11.
Double-diffusive convection in a vertical annulus filled with a fluid-saturated porous medium is numerically investigated with the aim to understand the effects of a discrete source of heat and solute on the fluid flow and heat and mass transfer rates. The porous annulus is subject to heat and mass fluxes from a portion of the inner wall, while the outer wall is maintained at uniform temperature and concentration. In the formulation of the problem, the Darcy–Brinkman model is adopted to the fluid flow in the porous annulus. The influence of the main controlling parameters, such as thermal Rayleigh number, Darcy number, Lewis number, buoyancy ratio and radius ratio are investigated on the flow patterns, and heat and mass transfer rates for different locations of the heat and solute source. The numerical results show that the flow structure and the rates of heat and mass transfer strongly depend on the location of the heat and solute source. Further, the buoyancy ratio at which flow transition and flow reversal occur is significantly influenced by the thermal Rayleigh number, Darcy number, Lewis number and the segment location. The average Nusselt and Sherwood numbers increase with an increase in radius ratio, Darcy and thermal Rayleigh numbers. It is found that the location for stronger flow circulation is not associated with higher heat and mass transfer rates in the porous annular cavity.  相似文献   

12.
Vahid Rajabi 《传热工程》2019,40(3-4):346-361
In this paper, local and global entropy generation features are studied numerically in two research flames and a real combustor problem. The research flames are the well-known Burner Engineering Research Laboratory and Sandia flame D experimental flame databases and the real combustor is a gas-turbine can-type combustor. The main focus is on investigating the effect of the swirl number, in the range 0.0–2.4, on entropy generation characteristics due to different phenomena, including viscous, mass transfer, heat transfer, heat-mass coupling, reaction, and specifically radiation. For this purpose, the surface and volumetric local entropy generation rates are formulated based on the first-order spherical harmonics model known as “P1,” a frequently used model in combustion applications. It is observed that heat transfer and reactions are dominant causes of entropy generation with the leading contribution of reaction at lower swirl numbers and heat transfer at higher swirl values. The radiation entropy generation is slightly affected by the swirl number and is of prime importance only in near stoichiometric conditions. Moreover, it is indicated how this local entropy generation analysis can be used to discover the weaknesses in the design of a real combustor.  相似文献   

13.
ABSTRACT

Laminar free convection in power-law fluids in a triangular duct is studied numerically to delineate the effects of the height-to-base ratio of the enclosure (0.2 to 2), power-law index (0.2 to 1.8), Grashof number (10 to 104) and Prandtl number (0.7 to 100). The heat transfer is analyzed for the heated base with the other two walls being cold. Detailed kinematics is characterized by the formation of multiple recirculating zones ranging from two to four cells. Shear rate contours provide additional insights about the variation of the local viscosity in the fluid. Heatlines and the values of the Bejan number over the range of conditions are calculated to delineate the contributions of the entropy generation due to thermal effects and viscous dissipation. At low Grashof and/or Prandtl numbers, conduction dominates the overall heat transfer and this transition between the conduction and convection-dominated regimes is captured in terms of a modified Rayleigh number. The effect of aspect ratio on the Nusselt number is modulated by the values of Grashof and Prandtl numbers and power-law index. The present results have been consolidated via the use of a modified Rayleigh number for estimating the value of average Nusselt number in a new application.  相似文献   

14.
In the present study, natural convection in a two-dimensional porous right-angled triangular enclosure with one wavy wall is studied numerically. Three cases with one, two, and three undulations on the left wall are studied in this analysis. The stream function-vorticity equations are solved using finite-difference technique and a structured nonorthogonal body-fitted mesh is used for computations. The effect of Rayleigh number (Ra = 103–106), Darcy number (Da = 10?4–10?2) and undulations on the heat transfer, fluid flow, and entropy generation is investigated. It is found that average Nusselt number increases with Darcy number and number of undulations present on the left wall at fixed Darcy number.  相似文献   

15.
In the present work, entropy generation due to natural convection of a nanofluid that consists of water and Cu in a cavity with a protruded heat source has been studied. To investigate both the First and the Second Law of Thermodynamics for this considered problem the numerical scheme carried out based on finite volume method with the SIMPLE algorithm for pressure-velocity coupling. In this study, the effect of Rayleigh number, solid concentration and heat source location on entropy generation have been revealed. Consequently the optimum case has been selected since the thermal system could have the least entropy generation and the best heat transfer rate. The results have shown the maximum value of Nusselt number and minimum entropy generation are obtained when heat source mountains in the bottom horizontal wall.  相似文献   

16.
This article numerically studies entropy generation due to natural convection in a rectangular cavity with circular corners. In this work, in order to solve the governing equations, an explicit finite-volume procedure and a time-marching method are utilized. Also, instead of the conventional algorithms of SIMPLE, SIMPLEM, and SIMPLEC, an artificial compressibility technique is applied for coupling the continuity to the momentum equations. Entropy generation, as a representation of irreversibility and efficiency loss in engineering heat transfer processes, is analyzed in detail. In this work, effects of the radius of walls corner, Rayleigh number, and distribution ratio on total entropy generation, Nusselt number, and Bejan number are also evaluated. The results show that entropy generation decreases with the increase of the radius of the walls’ corner and increases with the increase of Rayleigh number, aspect ratio, and irreversibility ratio.  相似文献   

17.
In the present work, heat transfer and entropy generation characteristics are numerically investigated in presence of single and double obstructive blocks within a square enclosure. It is found that the adiabatic block(s) enhance(s) the heat transfer marginally up to a critical size in a convection-dominated regime. On the other hand, the enhancement parameter is observed to be more with an increase in block size in a lower range of Rayleigh numbers for an isothermal block. The entropy generation for thermal irreversibility is observed to be several orders higher than that due to viscous dissipation in all cases.  相似文献   

18.
Entropy generation due to conjugate natural convection heat transfer and fluid flow has been studied inside an enclosure with bounded by two solid massive walls from vertical sides at different thicknesses. Enclosure is differentially heated from vertical walls and horizontal walls are adiabatic. Governing equations which are written in streamfunction-vorticity form solved by finite difference technique for the governing parameters as Rayleigh number, 103 ≤ Ra ≤ 106, length ratio of solid walls as 1 (for left vertical wall) and 2 (for right vertical wall) and thermal conductivity ratio of solid to fluid (k), 1 ≤ k ≤ 10. Entropy generation contours due to fluid friction and heat transfer irreversibility, isotherms, streamlines, Nusselt numbers and velocity profiles were obtained. It is found that entropy generation increases with increasing of thermal conductivity ratio and thicknesses of the walls. Entropy generation due to heat transfer is more significant than that of fluid flow irreversibility for all values of thickness of the solid vertical walls.  相似文献   

19.
A numerical study of non-Darcy natural convection in a porous enclosure saturated with a power-law fluid is presented. Hydrodynamic and heat transfer results are reported for the configuration in which the enclosure is heated from a side-wall while the horizontal walls are insulated. The flow in the porous medium is modeled using the modified Brinkman–Forchheimer-extended Darcy model for power-law fluids, which accounts for both inertia and boundary effects. The results indicate that when the power law index is decreased, the circulation within the enclosure increases leading to a higher Nusselt number and these effects are enhanced as the Darcy number is increased. Consequently as the power law index decreases, the onset of the transitions from Darcy regime to Darcy–Forchheimer–Brinkman regime to asymptotic convection (boundary layer) regime shift to higher corresponding values of the Darcy number. An increase in Rayleigh number produces similar effects as a decrease in power law index.  相似文献   

20.
In this study, the effect of different chord shapes of a triangular cavity has been investigated on the natural convection heat transfer characteristics inside the cavity using the commercial ANSYS‐FLUENT software. Heat transfer phenomena have been regarded as very significant due to the widespread application of natural convection heat transfer in different engineering fields. According to the performed studies, the chord with partitions can considerably enhance the natural convection heat transfer rate inside the cavity. Four different types of partitions including zigzag, two types of rectangular and sinusoidal were considered on the chord of the triangular cavity. The dimensionless parameters investigated in the results include Rayleigh number, Prandtl number, and Nusselt number. The results comprise the isotherm lines, streamlines, velocity lines, local and average Nusselt numbers analyzed with regard to the chord type and Rayleigh number variation. The results revealed that the temperature trend is almost the same for all configurations. Furthermore, the average Nusselt number value in zigzag and sinusoidal is higher in comparison with other cases due to the larger heat transfer area. Finally, by examining the streamlines, isotherm and velocity lines, average and local Nusselt numbers, it was founded that the cavities with zigzag and sinusoidal chord shape have the better performance in terms of heat transfer rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号