首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a growing interest to overcome such diet-related health issues through the interactions with gut microbiome. A complex network of interactions between nutrition, gut microbiota and health has gradually emerged, which has been rarely explored in its whole. Imbalance of the normal gut microbiota has been linked with gastrointestinal conditions. This editorial highlighted the recent developments in the hydrocolloid-structured foods and the gut microbiome in the digestive tract.  相似文献   

2.
黄酮类化合物是一大类重要的植物次生代谢产物,既具有良好的药理活性,也是重要的营养因子。它的吸收、代谢及排泄等均在胃肠道内完成,在胃肠道中发挥多种生理功能,包括抗氧化、抗炎、抗癌、调节肠道菌群等。因此,近年来已有大量研究报道了有关黄酮类化合物在消化道中的消化、吸收规律,并针对黄酮类化合物的功能活性将其开发用于针对消化道疾病的各种新型食品、药品、保健品中。本文就近年来黄酮类化合物在胃肠道中代谢规律及其对人类健康效应相关研究进行了综述,旨在为黄酮类化合物在预防肠道疾病中的应用及作为新型功能性食品的开发提供参考。  相似文献   

3.
Intestinal microbiocenosis condition, cytokine IL-6, IL-10 and TNF-alpha levels and allergic sensitivity in experimental systemic anaphylaxis test were studied in rats that received intragastrically nanoparticles of titanium dioxide. The results obtained were discussed from the standpoint of possible health risks related to nanodimensional titanium dioxide exposure.  相似文献   

4.
Functional foods comprising probiotic bacteria are receiving increasing attention from the scientific community and science funding agencies [1]. An essential aspect relating to the functionality of probiotic-based foods is to develop molecular methods to determine the presence, activity and viability of probiotic bacteria in the human gastrointestinal (GI) tract [2]. The GI tract is composed of a complex ecosystem of various microbial habitats colonized by numerous different commensal micro-organisms. This indigenous gut microbiota is essential to the overall health of the host by performing important physiological functions. In particular, they protect against pathogenic bacteria and drive the development of the immune system during neonatal life. Further metabolic activities of the GI microbiota that beneficially affect the host include continued degradation of food components, vitamin production, and production of short chain fatty acids that feed the colonic mucosa. It is clear that factors such as diet, sickness, stress, or medication can result in loss of well-being of the host, and it is assumed that some of these symptoms are due to perturbation of what is termed the normal balance of the gut microbiota. Knowledge of the structure and function of the standard microbiota, and its response to diet, genetic background and lifetime of the host must be taken into account when designing probiotic-based functional foods. The application of molecular techniques for detection and identification of microbes has provided a major breakthrough in the analysis of microbial ecosystems and their function [3]. The successful application and further potential of these molecular methods to study probiotic bacteria and their impact on the standard GI microbiota is discussed below.  相似文献   

5.
The intestinal barrier plays a central role in sustaining gut homeostasis and, when dysfunctional, may contribute to diseases. Dietary flavonoids derived from Citrus genus represent one of the main naturally occurring phytochemicals with multiple potential benefits for the intestinal barrier function. In the intestine, citrus flavonoids (CFs) undergo ingestion from the lumen, biotransformation in the epithelial cells and/or crosstalk with luminal microbiota to afford various metabolites that may in turn exert protective actions on gut barrier along with their parental compounds. Specifically, the health-promoting properties of CFs and their metabolic bioactives for the intestinal barrier include their capacity to (a) modulate barrier permeability; (b) protect mucus layer; (c) regulate intestinal immune system; (d) fight against oxidative stress; and (e) positively shape microbiome and metabolome. Notably, local effects of CFs can also generate systemic benefits, for instance, improvement of gut microbial dysbiosis helpful to orchestrate gut homeostasis and leading to alleviation of systemic dysmetabolism. Given the important role of the intestinal barrier in overall health, further understanding of underlying action mechanisms and ultimate health effects of CFs as well as their metabolites on the intestine is of great significance to future application of citrus plants and their bioactives as dietary supplements and/or functional ingredients in medical foods.  相似文献   

6.
Although the current production of oxide nanoparticles may be modest, the wide range of proposed applications and forecasted growth in production has raised questions about the potential impact of these nanoparticles on the environment and human health. Iron oxide nanoparticles have been proposed for an increasing number of biomedical applications although in vitro toxicity depending on the particles coating has been evidenced. The aim of this study was to examine the potential in vitro cyto- and genotoxicity on human dermal fibroblasts of DMSA-coated maghemite nanoparticles (NmDMSA) as a function of well-defined physicochemical states. Well-stabilized NmDMSA produced weak cytotoxic and no genotoxic effects. This is attributed in part to the DMSA coating, which serves as a barrier for a direct contact between nano-oxide and fibroblasts, inhibiting a potential toxic effect.  相似文献   

7.
食品中纳米颗粒的增加使得其经口暴露于人体的可能性增大.因此,准确评估经口暴露纳米颗粒安全性十分重要.作者综述了食品中最常见纳米颗粒与食物基质、胃肠道的相互作用对纳米颗粒物理化学性质和生物效应影响,为准确评估纳米颗粒安全性提供参考.  相似文献   

8.
Abstract: Biopolymer nano‐ and micro‐particles, fabricated from either proteins and/or polysaccharides, can be utilized as delivery systems or to modulate the physicochemical and sensory characteristics of food products. This article reviews the principles underlying the design, fabrication, and application of biopolymer particles fabricated from globular proteins, used either alone or in combination with polysaccharides, within the food industry. The properties of biopolymer particles and their impact on the physicochemical and functional properties of foods are described. The molecular characteristics and interactions of the building blocks (proteins and polysaccharides) used to assemble these particles are briefly reviewed. The major structural design principles that can be used to fabricate biopolymer particles from food‐grade proteins and polysaccharides are outlined. Finally, some of the potential applications of functional biopolymer particles within foods are highlighted.  相似文献   

9.
Several foods are rich sources of phenolic compounds (PC) and their beneficial effects on human health may be increased through the action of probiotics. Additionally, probiotics may use PC as substrates, increasing their survival and functionality. This review presents available studies on the effects of PC on probiotics, including their physiological functionalities, interactions and capability of surviving during exposure to gastrointestinal conditions and when incorporated into food matrices. Studies have shown that PC can improve the adhesion capacity and survival of probiotics during exposure to conditions that mimic the gastrointestinal tract. There is strong evidence that PC can modulate the composition of the gut microbiota in hosts, improving a variety of biochemical markers and risk factors for chronic diseases. Available literature also indicates that metabolites of PC formed by intestinal microorganisms, including probiotics, exert a variety of benefits on host health. These metabolites are typically more active than parental dietary PC. The presence of PC commonly enhances probiotic survival in different foods. Finally, further clinical studies need to be developed to confirm in vitro and experimental findings concerning the beneficial interactions among different PC and probiotics.  相似文献   

10.
Numerous examples of next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs, are commercially available. These products are usually designed to have physicochemical properties, sensory attributes, and functional behaviors that match those of the animal-sourced products they are designed to replace. However, there has been concern about the potential negative impacts of these foods on human nutrition and health. In particular, many of these products have been criticized for being ultraprocessed foods that contain numerous ingredients and are manufactured using harsh processing operations. In this article, the concept of ultraprocessed foods is introduced and its relevance to describe the properties of next-generation plant-based foods is discussed. Most commercial plant-based meat, seafood, egg, and dairy analogs currently available do fall into this category, and so can be classified as ultraprocessed plant-based (UPB) foods. The nutrient content, digestibility, bioavailability, and gut microbiome effects of UPB foods are compared to those of animal-based foods, and the potential consequences of any differences on human health are discussed. Some commercial UPB foods would not be considered healthy based on their nutrient profiles, especially those plant-based cheeses that contain low levels of protein and high levels of fat, starch, and salt. However, it is argued that UPB foods can be designed to have good nutritional profiles and beneficial health effects. Finally, areas where further research are still needed to create a more healthy and sustainable food supply are discussed.  相似文献   

11.
Food-grade titanium dioxide (TiO2) is a common and widespread food additive in many processed foods, personal care products, and other industrial categories as it boosts the brightness and whiteness of colours. Although it is generally recognised as safe for humans, there is a growing interest in the health risks associated with its oral intake. This study quantified and identified TiO2 nanoparticles present in confectionery foods, which are children’s favourite foods, with inductively coupled plasma optical emission spectrometry (ICP-OES) and transmission electron microscopy (TEM). A reliable digestion method using hot sulphuric acid and a digestion catalyst (K2SO4:CuSO4 = 9:1) was suggested for titanium analysis. Validations of the experimental method were quite acceptable in terms of linearity, recoveries, detection limits, and quantification limits. Of all the 88 analysed foods, TiO2 was detected in 19 products, all except three declared TiO2 in their labelling. The mean TiO2 content of candies, chewing gums, and chocolates were 0.36 mg g?1, 0.04 mg g?1, and 0.81 mg g?1, respectively. Whitish particles isolated from the confectionery foods were confirmed as TiO2 nanoparticles via TEM and energy dispersive X-ray spectroscopy (EDX), in which nanosized particles (<100 nm) were identified.  相似文献   

12.
Consumption of dietary ellagitannins (ETs) has been associated with different health benefits. Nonetheless, ETs are not bioavailable as such and are metabolized in vivo. They are partially converted into ellagic acid (EA) in the upper gastrointestinal (GI) tract, but this first metabolite is also poorly bioavailable. In the lower GI tract, EA and residual ETs are metabolized by gut microbiota to produce urolithins, which, together with their conjugate relatives, persist at relatively high concentrations in plasma and urine for days after ingestion of dietary ETs. Thus, ETs and EA may exert local health benefits on the GI tract but systemic health benefits are more likely to result from urolithins. Cellular models suggest that, at physiological concentration, urolithins are active against chronic degenerative diseases. Health benefits have been proven in animal models and during clinical studies. Even so, the crucial involvement of gut microbiota in ET bioconversion induces important variability of physiological response among humans, giving rise to the concept of high and low urolithin producers. This variability among consumers in obtaining potential health benefits from dietary ETs raises new challenges for the functional food industry. Different research perspectives are discussed to tackle this significant issue for nutritionists, food technologists, and consumers.  相似文献   

13.
Dietary fibers (DFs) regulate host health through various mechanisms related to their dietary sources, specific physicochemical structures, fermentability, and physiological properties in the gut. Considering the numerous types and sources of DFs and their different physicochemical and physiological properties, it is challenging yet important to establish the key mechanisms for the beneficial health effects of DFs. In this review, the types and structures of DFs from different fruits and vegetables were summarized and the effects of different processing methods on DF properties were discussed. Moreover, the impacts of DFs on gut microbial ecology, host physiology, and health were described. Understanding the complex interaction between different DFs and gut microbiota is vital for personalized nutrition. It is also important to comprehend factors influencing gut microbiota and strategies to regulate the microbiota, thereby augmenting beneficial health responses. The exploration of molecular mechanism linking DFs, gut microbiota, and host physiology may allow for the identification of effective targets to fight against major chronic diseases.  相似文献   

14.
目的 评估辽宁地区部分食品中二氧化硫残留暴露对我省居民健康的潜在风险。方法 随机从辽宁省大型商场和小型农贸市场采集样品共330份, 采用蒸馏法进行二氧化硫残留量检测。基于点评估和概率评估两种评估方式, 对食物中二氧化硫残留的膳食暴露进行风险评估。结果 经检测的不同食品中二氧化硫的膳食摄入风险值均远小于100%。运用风险评估软件@risk7.6进行概率评估, 在50%、75%、90%、99%暴露量位点下, 不同食物二氧化硫的风险商(hazard quotient, HQ)值均远小于1。结论 辽宁地区食物中二氧化硫残留量在人体可接受范围内, 无明显膳食风险。  相似文献   

15.
Cereal‐based fermented foods are major contributors to energy intake in developing countries (DC). Their microbiota is dominated by lactic acid bacteria and has been extensively investigated. Diversity studies have been facilitated by molecular methods enabling genotyping of isolates; the rapid development of ‘omics’ approaches should facilitate more comprehensive studies to describe the relation between microbial diversity, cell physiology and product characteristics. Also, the link between the food microbiota and health benefits, in particular in nutrition, should be investigated. There is a need to encourage researches in the field of DC cereal‐based foods in direction of more mechanistic approaches.  相似文献   

16.
The rational design and fabrication of edible codelivery carriers are important to develop functional foods fortified with a plurality of bioactive agents, which may produce synergistic effects in increasing bioactivity and functionality to target specific health benefits. Food proteins possess considerable functional attributes that make them suitable for the delivery of a single bioactive agent in a wide range of platforms. Among the different types of protein-based carriers, protein–ligand nanocomplexes, micro/nanoparticles, and oil-in-water (O/W) emulsions have increasingly attracted attention in the codelivery of multiple bioactive agents, due to the simple and convenient preparation procedure, high stability, matrix compatibility, and dosage flexibility. However, the successful codelivery of bioactive agents with diverse physicochemical properties by using these simple-structure carriers is a daunting task. In this review, some effective strategies such as combined functional properties of proteins, self-assembly, composite, layer-by-layer, and interfacial engineering are introduced to redesign the carrier structure and explore the encapsulation of multiple bioactive agents. It then highlights success stories and challenges in the co-encapsulation of multiple bioactive agents within protein-based carriers with a simple structure. The partition, protection, and release of bioactive agents in these protein-based codelivery carriers are considered and discussed. Finally, safety and application as well as challenges of co-encapsulated bioactive agents in the food industry are also discussed. This work provides a state-of-the-art overview of protein-based particles and O/W emulsions in co-encapsulating bioactive agents, which is essential for the design and development of novel functional foods containing multiple bioactive agents.  相似文献   

17.
Sizeable scientific evidence indicates the health benefits related to phenolic compounds and dietary fiber. Various phenolic compounds-rich foods or ingredients are also rich in dietary fiber, and these two health components may interrelate via noncovalent (reversible) and covalent (mostly irreversible) interactions. Notwithstanding, these interactions are responsible for the carrier effect ascribed to fiber toward the digestive system and can modulate the bioaccessibility of phenolics, thus shaping health-promoting effects in vivo. On this basis, the present review focuses on the nature, occurrence, and implications of the interactions between phenolics and food components. Covalent and noncovalent interactions are presented, their occurrence discussed, and the effect of food processing introduced. Once reaching the large intestine, fiber-bound phenolics undergo an intense transformation by the microbial community therein, encompassing reactions such as deglycosylation, dehydroxylation, α- and β-oxidation, dehydrogenation, demethylation, decarboxylation, C-ring fission, and cleavage to lower molecular weight phenolics. Comparatively less information is still available on the consequences on gut microbiota. So far, the very most of the information on the ability of bound phenolics to modulate gut microbiota relates to in vitro models and single strains in culture medium. Despite offering promising information, such models provide limited information about the effect on gut microbes, and future research is deemed in this field.  相似文献   

18.
BackgroundThe human gastrointestinal tract harbors hundreds of millions of microorganisms, which create a unique environment for each individual. The relationship between gut microflora and human health is being increasingly recognized, and the influence of gut microbiota on the host is well characterized, including maintenance of the body's energy metabolism and immune system. Gut microbiota have been found to be closely linked to obesity, allergy, diabetes, cancer or even some mental diseases. Diet can strongly affect human health, partly by modulating gut microbial composition and quantity.Scope and ApproachIn this review, the relationship between diseases and gut microbes and the effect of different dietary components on gut microflora are summarized. This paper mainly focused on how different diet structure such as high intake of dietary fiber, fat, protein and alcohol etc. may exert impact on specific diseases via gut microflora.Key findings and conclusionsSpecific diseases can be strongly affected by gut microflora and dietary nutrition plays an important role in affecting the composition of gut microflora for individuals since their birth. A bridge between diets and multiple diseases via gut microbiota is built in this review, hopefully to provide references for further investigation of how the diets affect human health via gut microflora and for development of functional foods targeting on gut microflora to solve some health problems.  相似文献   

19.
The intestinal immune barrier is considered to be the gatekeeper of the human body and rapidly develops directly after birth. Many pre‐ and postnatal factors influence the development of the gut‐barrier, which is composed of the microbiota, the mucus, the epithelial layer and the mucosal immune system. Even minor disturbances during barrier development can have consequences for health far into adulthood. Here we critically discuss the current knowledge on which pre‐ and postnatal factors influence development, maturation, and maintenance of the gut immune barrier. Human milk has a unique composition and is the gold standard for adequate development of the intestinal immune barrier. Not only the influence of human milk oligosaccharides (HMOs) but also that of glycoproteins (HMGPs) is reviewed. We discuss the influence of maternal genetic factors, such as the secretor and Lewis phenotypes on breast milk fucosylation and sialylation of HMOs and HMGPs. This diversity in HMOs and HMPGs influences microbiota composition and also the development of the immune barrier. Cow milk‐derived infant formula is often being used as an alternative for human breast milk. The consequences of this for proper development of the intestinal immune barrier and, in particular, the differences in the type of oligosaccharides and glycosylation patterns (sialic and fucose composition) between cow and human milk are critically discussed. Current and prospective strategies to promote proper gut‐immune maturation are proposed. These might include more personalized infant formulas when breast milk is not an option.  相似文献   

20.
Over the recent decades,protein oxidation in muscle foods has gained increasing research interests as it is known that protein oxidation can affect eating quality and nutritional value of meat and aquatic products. Protein oxidation occurs during freezing/thawing and frozen storage of muscle foods, leading to irreversible physicochemical changes and impaired quality traits. Controlling oxidative damage to muscle foods during such technological processes requires a deeper understanding of the mechanisms of freezing-induced protein oxidation. This review focus on key physicochemical factors in freezing/thawing and frozen storage of muscle foods, such as formation of ice crystals, freeze concentrating and macromolecular crowding effect, instability of proteins at the ice–water interface, freezer burn, lipid oxidation, and so on. Possible relationships between these physicochemical factors and protein oxidation are thoroughly discussed. In addition, the occurrence of protein oxidation, the impact on eating quality and nutrition, and controlling methods are also briefly reviewed. This review will shed light on the complicated mechanism of protein oxidation in frozen muscle foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号